Section 8.2: Multiplication and Division of Integers

MULTIPLICATION:

• **Number line:** Recall that the multiplication of whole numbers can be viewed as repeated addition.

• Pattern:

• Charge Field: $a \times b$

- 1. Begin with a set of zero.
- 2. If a > 0, then we add a groups of b to our set.
- 3. If a < 0, then we take away |a| groups of b from our set.

Example 1: Illustrate 3×-4 using the charge field method.

Example 2: Illustrate -5×-2 using the charge field method.

INTEGER MULTIPLICATION FACTS:

- $a \times 0 = 0 = 0 \times a$
- positive \times negative = negative
- positive \times positive = positive
- negative \times negative = positive

Properties of Integer Multiplication

- Closure Property: integer \times integer = integer.
- Commutative Property: If a and b are integers, then $a \cdot b = b \cdot a$.
- Associative Property: If a, b, and c are integers, then $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- <u>Identity Property</u>: One is the unique number such that $a \cdot 1 = a = 1 \cdot a$ for all integers \overline{a} . We say that 1 is the multiplicative identity.
- Distributive Property: If a, b, and c are integers, then a(b + c) = ab + ac and $\overline{a(b-c) = ab ac}$.
- Multiplication Cancellation Property: Suppose $c \neq 0$. If ac = bc then a = b.
- Zero Divisors Property: ab = 0 if and only if a = 0 or b = 0.

DIVISION: Let a and b be integers with $b \neq 0$. Then $a \div b = c$ if and only if $a = b \cdot c$ for a unique integer c. (Recall that this is the missing factor approach).

INTEGER DIVISION FACTS:

- $\bullet \ a \div 1 = a$
- positive \div negative = negative
- positive \div positive = positive
- negative \div negative = positive

- negative \div positive = negative
- If $a \neq 0$, then $0 \div a = 0$
- $a \div 0 =$ undefined
- $0 \div 0 =$ undefined

Example 3: Let a be a negative integer, b be a positive integer, and c be a negative integer. Determine if each of the following is positive, negative, or cannot be determined.

(a) (a-b)(b-c) (c) (a+c)(b+c)

(b)
$$4a - 3b + 9c$$
 (d) $a + bc$

NEGATIVE EXPONENTS: Let a be any nonzero number and n be a positive integer. Then

$$a^{-n} = \frac{1}{a^n}$$
 and $\frac{1}{a^{-n}} = a^n$.

Example 4: Simplify the following:

(a)
$$(-5)^2 =$$
 (c) $4^{-2} =$

(b)
$$-6^2 =$$
 (d) $5^{-3} =$