Section 9.1: Rational Numbers

- Rational numbers: are of the form $\frac{a}{b}$ where a and b are both integers and $b \neq 0$.

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a \text { and } b \text { are integers, } b \neq 0\right\} .
$$

NOTE: Every integer, whole number, and fraction is a rational number.

- Let $\frac{a}{b}$ be any rational number and n be a nonzero integer. Then

$$
\frac{a}{b}=\frac{n a}{n b}=\frac{a n}{b n} .
$$

- Let $\frac{a}{b}$ be any rational number. Then

$$
-\frac{a}{b}=\frac{-a}{b}=\frac{a}{-b} .
$$

- $\frac{a}{b}$ is a positive rational number when either a and b are both positive or when a and b are both negative.
- $\frac{a}{b}$ is a negative rational number when a and b have different signs (one negative and one positive).

Properties of Rational Number Addition

- Closure Property: Rational number + Rational number $=$ Rational number.
- Commutative Property: $\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}$.
- Associative Property: $\frac{a}{b}+\left(\frac{c}{d}+\frac{e}{f}\right)=\left(\frac{a}{b}+\frac{c}{d}\right)+\frac{e}{f}$.
- Identity Property: $\frac{a}{b}+0=\frac{a}{b}=0+\frac{a}{b}$.
- Additive Inverse Property: For every rational number $\frac{a}{b}$, there exists a unique rational number $-\frac{a}{b}$ such that

$$
\frac{a}{b}+-\frac{a}{b}=0=-\frac{a}{b}+\frac{a}{b} .
$$

$-\frac{a}{b}$ is called the additive inverse.

Properties of Rational Number Multiplication

- Closure Property: Rational number \cdot Rational number $=$ Rational number.
- Commutative Property: $\frac{a}{b} \cdot \frac{c}{d}=\frac{c}{d} \cdot \frac{a}{b}$.
- Associative Property: $\frac{a}{b} \cdot\left(\frac{c}{d} \cdot \frac{e}{f}\right)=\left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f}$.
- Identity Property: $\frac{a}{b} \cdot 1=\frac{a}{b}=1 \cdot \frac{a}{b}$.
- Multiplicative Inverse Property: For every nonzero rational number $\frac{a}{b}$, there exists a unique rational number $\frac{b}{a}$ such that

$$
\frac{a}{b} \cdot \frac{b}{a}=1=\frac{b}{a} \cdot \frac{a}{b} .
$$

$\frac{b}{a}$ is called the multiplicative inverse or reciprocal.

- Distributive Property:

$$
\frac{a}{b}\left(\frac{c}{d}+\frac{e}{f}\right)=\frac{a}{b} \cdot \frac{c}{d}+\frac{a}{b} \cdot \frac{e}{f}
$$

Cross Multiplication of Rational Number Inequality: Let $\frac{a}{b}$ and $\frac{c}{d}$ be rational numbers with $b>0$ and $d>0$. Then

$$
\frac{a}{b}<\frac{c}{d} \quad \text { if and only if } \quad a d<b c
$$

NOTE: BE CAREFUL!!! Both denominators must be positive in order to use this. DO NOT use if one of the denominators is negative unless you first the rational number using $\frac{a}{-b}=\frac{-a}{b}$.

EXAMPLES: Put the appropriate sign $(<,=,>)$ between each pair of rational numbers to make a true statement.

1. $-\frac{1}{3}$ $\frac{5}{4}$
2. $\frac{-5}{6}$
$\frac{-11}{12}$
3. $\frac{-12}{15}$

$$
\frac{36}{-45}
$$

4. $-\frac{3}{12} \quad \frac{4}{-20}$
