Section 9.2: Real Numbers

- Irrational Numbers: Set of numbers which have an infinite non-repeating decimal approximation. An irrational number cannot be written as a fraction.
- Real Numbers: are the union of rational and irrational numbers.
- Square root: Let a be a nonnegative real number. Then the square root of a (principal square root), denoted \sqrt{a}, is defined as

$$
\sqrt{a}=b \quad \text { where } \quad b^{2}=a, \text { and } b \geq 0 .
$$

- n-th roots: Let a be a real number and n be a positive integer.

1. If $a \geq 0$, then $\sqrt[n]{a}=b$ if and only if $b^{n}=a$ and $b \geq 0$.
2. If $a<0$ and n is odd, then $\sqrt[n]{a}=b$ if and only if $b^{n}=a$.
3. If $a<0$ and n is even, then $\sqrt[n]{a}$ is undefined.

- Rational exponents and Radicals: Let a be any real number and $\frac{m}{n}$ be a rational number is simplest form. Then

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

NOTE: In a rational exponent, the numerator indicates the power and the denominator indicates the root.

Examples: Simplify each expression

1. $8^{2 / 3}=$
2. $16^{3 / 4}=$
3. $27^{1 / 3}=$
4. $(-64)^{2 / 3}=$

NOTE: The properties that held for integer exponents also hold for rational exponents.

Solving Inequalities

- Addition Property of Inequality: If a, b, and c are real numbers, then

$$
a<b \quad \text { and } a+c<b+c
$$

are equivalent. (That is, you can add or subtract the same quantity on both sides of the inequality without changing the solution.)

- Multiplication Property of Inequality: For all real numbers a, b, and c, with $c \neq 0$,

1. $a<b$ and $a c<b c$ are equivalent if $c>0$.
2. $a<b$ and $a c>b c$ are equivalent if $c<0$.
(That is, whenever you multiply or divide by a negative number you must reverse or flip the inequality.)

Examples: Solve the following inequalities

1) $x-\frac{2}{3}>\frac{5}{6}$
2) $-2 x+4 \leq 11$
3) $3 x+5 \geq 6 x-7$
4) $\frac{3}{2} x-3<\frac{5}{6} x+\frac{1}{3}$
