Section 3.1: Whole Numbers Addition \& Subtraction

ADDITION: \quad addend + addend $=$ sum

- Set Model:

Addition of Whole Numbers: Let a and b be any two whole numbers. If A and B are disjoint sets with $a=n(A)$ and $b=n(B)$, then $a+b=n(A \cup B)$.

- Measurement Model: Addition can be represented by directed arrows.

PROPERTIES OF WHOLE NUMBER ADDITION

- Closure Property: The sum of any two whole numbers is a whole number.

Example 1: Determine if the following sets are closed under addition.
(a) $\{0,1,2\}$
(b) $\{0,2,4,6,8,10, \ldots\}$

- Commutative Property: Let a and b be whole numbers. Then

$$
a+b=b+a .
$$

- Associative Property: Let a, b, and c be any whole numbers. Then

$$
(a+b)+c=a+(b+c)
$$

- Identity Property: There is a unique whole number 0 such that for all whole numbers a,

$$
a+0=a=0+a .
$$

Zero is called the additive identity.

Example 2: Identify the property being used.
(a) $3+7=7+3$
(c) $8+0=8$
(b) $(4+9)+3=4+(9+3)$
(d) $5+(6+7)=(6+7)+5$

SUBTRACTION: minuend - subtrahend $=$ difference

- Take-Away Approach:

Subtraction of Whole Numbers (take-away): Let a and b be any whole number and let A and B be sets such that $a=n(A)$ and $b=n(B)$ and $B \subseteq A$. Then $a-b=n(A-B)$.

- Missing Addend Approach:

Subtraction of Whole Numbers (missing addend): Let a and b be any whole numbers. Then $a-b=c$ if and only if $a=b+c$ for some whole number c. We call c the missing addend.

NOTE: Subtraction does not satisfy any of the properties that addition satisfied.

