Section 3.2: Whole Numbers Multiplication \& Division

MULTIPLICATION: factor \cdot factor $=$ product

- Repeated Addition Approach: Let a and b be any whole numbers where $a \neq 0$. Then

$$
a \cdot b=\underbrace{b+b+\cdots+b}_{a \text { times }}
$$

- Rectangular Array Approach: Let a and b be any whole numbers. Then $a \cdot b$ is the number of elements in a rectangular array having a rows and b columns.

PROPERTIES OF WHOLE NUMBER MULTIPLICATION

- Closure Property: The product of any two whole numbers is a whole number.

Example 1: Determine if the following sets are closed under multiplication.
(a) $\{0,1\}$
(b) $\{0,1,2\}$

- Commutative Property: Let a and b be whole numbers. Then

$$
a \cdot b=b \cdot a .
$$

- Associative Property: Let a, b, and c be any whole numbers. Then

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) .
$$

- Identity Property: There is a unique whole number 1 such that for all whole numbers a,

$$
a \cdot 1=a=1 \cdot a .
$$

One is called the multiplicative identity.

- Distributive Property: Let a, b, and c be whole numbers. Then

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& a(b-c)=a b-a c
\end{aligned}
$$

- Multiplication Property of Zero: For every whole number a,

$$
a \cdot 0=0 \cdot a=0 .
$$

DIVISION: \quad dividend \div divisor $=$ quotient

- Repeated Subtraction Approach:
- Missing Factor Approach: If a and b are any whole numbers with $b \neq 0$, then $a \div b=c$ if and only if $a=b \cdot c$ for some whole number c.

