Topic 2: Congruence Modulo

- Recall that the clock number is the additive identity (or zero). So, we can associate the integers with a particular clock by "wrapping" the integer number line around the clock. Therefore, there are infinitely many integers associated with each clock number. We express this symbolically as follows:

Congruence Modulo m: Let a, b, and m be integers with $m \geq 2$. Then

$$
a \equiv b(\bmod m) \quad \text { if and only if } \quad m \mid(a-b) .
$$

NOTE: To do this we need an extended version of "divides" which holds for integers. Namely,
$a \mid b \quad(a \neq 0)$ if there exists an integer c such that $a \cdot c=b$.

Example 1: True or False

(a) $8 \equiv 3(\bmod 5)$
(b) $7 \equiv 2(\bmod 6)$
(c) $14 \equiv 2(\bmod 6)$
(d) $25 \equiv 3(\bmod 13)$

Example 2: Describe all integers n, where $-20 \leq n \leq 20$, which make each of the following congruences true.
(a) $n \equiv 2(\bmod 9)$
(b) $\quad 5 \equiv n(\bmod 4)$
(c) $12 \equiv 4(\bmod n)$

