Topic 2: Congruence Modulo

• Recall that the clock number is the additive identity (or zero). So, we can associate the integers with a particular clock by "wrapping" the integer number line around the clock. Therefore, there are infinitely many integers associated with each clock number. We express this symbolically as follows:

Congruence Modulo m: Let a, b, and m be integers with $m \ge 2$. Then

 $a \equiv b \pmod{m}$ if and only if $m \mid (a - b)$.

NOTE: To do this we need an extended version of "divides" which holds for integers. Namely,

 $a|b \quad (a \neq 0)$ if there exists an integer c such that $a \cdot c = b$.

Example 1: True or False

(a)
$$8 \equiv 3 \pmod{5}$$

- (b) $7 \equiv 2 \pmod{6}$
- (c) $14 \equiv 2 \pmod{6}$
- (d) $25 \equiv 3 \pmod{13}$

Example 2: Describe all integers n, where $-20 \le n \le 20$, which make each of the following congruences true.

(a) $n \equiv 2 \pmod{9}$

(b) $5 \equiv n \pmod{4}$

(c) $12 \equiv 4 \pmod{n}$