Section 2.1: Set Operations

Venn Diagrams: are diagrams used to represent the relationship between sets. (U is the universal set and it includes all items under discussion at a given time.)

Example 1: Draw a Venn Diagram to represent the following relationships between set A and set B.
(a) $B \subset A$
(b) A and B are disjoint sets.

SET OPERATIONS:

- Union of sets: The union of two sets A and B, denoted $A \cup B$, is the set that consists of all elements belonging either to A or to B (or both). That is,

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- Intersection of sets: The intersection of sets A and B, denoted $A \cap B$, is the set of all elements common to sets A and B. That is,

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- Complement of a set: The complement of a set, denoted \bar{A}, is the set of all elements in the universe U that are not in A. That is,

$$
\bar{A}=\{x \mid x \in U \text { and } x \notin A\}
$$

- Difference of sets: The set difference of set B from set A, denoted $A-B$, is the set of all elements in A that are not in B. That is,

$$
A-B=\{x \mid x \in A \text { and } x \notin B\}
$$

- Cartesian Product: The cartesian product of set A with set B, denoted $A \times B$ and $\operatorname{read} A$ cross B, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.

Example 2: Given the following sets:

$$
\begin{aligned}
U & =\{1,2,3,4,5,6,7,8\} \\
A & =\{1,2,3,4,5\} \\
B & =\{1,2,5,7\} \\
C & =\{5,6,7\}
\end{aligned}
$$

Find each of the following:
(a) $A \cup C$
(f) $\overline{B \cup C}$
(b) $B \cap A$
(g) $\bar{A} \cap \bar{C}$
(c) \bar{B}
(h) $C \times B$
(d) \bar{A}
(i) $(A \cap C) \cup \bar{B}$
(e) $C-A$
(j) $\bar{B} \cup C$

Example 3: Given the following sets:

$$
\begin{aligned}
U & =\{a, b, c, d, e, f, g, h, i, j\} \\
A & =\{b, c, d, e, g\} \\
B & =\{d, g, i, j\} \\
C & =\{a, d, i, j\}
\end{aligned}
$$

Place the elements of these sets in their proper locations on the following Venn Diagram.

Example 4: A survey of 100 randomly selected students gave the following information:

```
4 5 \text { students are taking Mathematics (M)}
4 1 ~ s t u d e n t s ~ a r e ~ t a k i n g ~ E n g l i s h ~ ( E ) ~
4 0 ~ s t u d e n t s ~ a r e ~ t a k i n g ~ H i s t o r y ~ ( H )
1 5 \text { students are taking Math and English}
1 8 \text { students are taking Math and History}
1 7 \text { students are taking English and History}
    7 \text { students are taking all three (Math, English and History)}
```

(a) Fill in the following Venn Diagram COMPLETELY using the data given above.

(b) How many students are taking only Mathematics?
(c) How many students are taking only English?
(d) How many students are taking only History?
(e) How many students are NOT taking any of these courses?
(f) How many students are not taking Mathematics?
(g) How many students are taking only 2 of these subjects (Mathematics, English, History)

Example 5: In each Venn Diagram, shade the area corresponding to the designated set.
(a) $A \cap \bar{B}$

(b) $\bar{A} \cup \bar{B}$

(d) $(A \cup B) \cap C$

