Section 2.4: Functions and Relations

Relation: is used to represent a relationship between 2 numbers or objects.

Examples: 5 is less than 7

I am shorter than my husband. I am older than my brother.

Ways to represent a relation:

• Arrow diagram: Use arrows to indicate the relation.

Example 1: Given $\{2,4,6,8\}$, represent the relation "is a divisor of" using an arrow diagram.

• Ordered pairs: Uses ordered pairs to indicate the relation.

Example 2: Given $\{2,4,6,8\}$, represent the relation "is a divisor of" using ordered pairs.

THREE RELATION PROPERTIES:

1.	Reflexive Property:	A relation	R on ϵ	a set A is	s reflexive i	$f(a,a) \in R$	for a	$a \in A$	A.
	(In other words, every	element of a	A is rel	ated to i	itself).				

2. **Symmetric Property:** A relation R on as set A is symmetric if whenever $(a, b) \in R$ then $(b, a) \in R$. (In other words, if a is related to b, then b is related to a.)

3. **Transitive Property:** A relation R on a set A is transitive if whenever $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$. (In other words, if a is related to b and b is related to c, then a is related to c.)

Equivalence relation: is a relation R on a set A which is reflexive, symmetric, and transitive.

Functions: are relations that match one element of the first set (called **domain**) to one element of the second set (called **codomain**) in such a way that no element in the first set is assigned to two different elements in the second set.

NOTE: A function can assign more than one element from the domain to the same element in the codomain.

Function notation: A function f that assigns an element of set A to an element in set B is denoted $f: A \to B$. If $a \in A$, then the function notation for the element in B that is assigned to a is f(a) (read f of a).

range: is the set of all elements in the codomain that the function pairs with an element of the domain. Hence, the range is a subset of the codomain.

Ways to represent a function:

- 1. Arrow Diagram
- 2. Tables
- 3. Ordered pairs
- 4. Function machines
- 5. Formulas
- 6. Graphs

Sequence: is a list of numbers, called terms, arranged in a particular order.

Special Sequences:

• Arithmetic sequence: is a sequence in which successive terms differ by the SAME number, called the common difference.

• **Geometric sequence:** is a sequence in which successive terms are found by multiplying the previous term by the SAME number, called the **common ratio**.

Example 3: Determine if each of the following sequences are arithmetic, geometric, or neither. For arithmetic and geometric, find the 200th term.

(a) $7, 20, 33, 46, 59, \dots$

(b) $2, 5, 10, 50, 500, 250000, \dots$

(c) $3, 12, 48, 192, \dots$

Example 4: How many terms are in the following sequence:

 $3, 18, 13, 18, 23, \ldots, 343$?