Topic 1: Statements

<u>statement</u>: is a declarative sentence that is true or false but not both.

Examples:	It is raining	Not Examples:	What time is it?
	(2)(3) = 6		Ohio is the nicest state.
	5 + 3 = 7		The big dog
	Ohio is the largest state		This sentence is false.

Notation: statements are represented by lowercase letters.

negation: the negation of a statement p, denoted $\sim p$, is a statement with the opposite truth value of p. (i.e.– if p is true then $\sim p$ is false, and if p is false then $\sim p$ is true.)

LOGICAL CONNECTIVES:

• <u>AND</u>: The conjunction of p and q, denoted $p \wedge q$, is the statement "p and q".

• <u>OR</u>: The **disjunction** of p and q, denoted $p \lor q$, is the statement "p or q".

• <u>IF-THEN</u>: An **implication** (or **conditional statement**), denoted $p \rightarrow q$, is the statement "If p then q". (p is called the hypothesis and q is called the conclusion.)

• IF AND ONLY IF: The **biconditional statement**, denoted $p \leftrightarrow q$, is the statement "p if and only if q". $(p \leftrightarrow q \text{ is the conjunction of } p \rightarrow q \text{ and } q \rightarrow p.)$

Example 1: If p is false and q is true, find the truth values for each of the following:

(a)
$$p \land q$$
(b) $\sim (\sim p \land q)$ (b) $p \lor q$ (c) $\sim p \land q$ (c) $\sim p$ (c) $\sim p \rightarrow q$ (d) $\sim (\sim p)$ (c) $\sim p \rightarrow q$ (e) $\sim p \lor q$ (c) $(p \lor q) \rightarrow (p \land q)$ (f) $p \land \sim q$ (c) $(p \lor q) \rightarrow (p \land q) \rightarrow p$

(g)
$$\sim (p \lor q)$$
 (n) $(p \lor q) \leftrightarrow (p \land q)$

The **<u>converse</u>** of $p \to q$ is $q \to p$

The **<u>inverse</u>** of $p \to q$ is $\sim p \to \sim q$

The **contrapositive** of $p \to q$ is $\sim q \to \sim p$

 $\underline{\textbf{logically equivalent}}:$ Two statements are logically equivalent when they have the same truth tables.

Example 2: Determine whether $p \to q$ and $\sim q \to \sim p$ are logically equivalent.

Example 3: Determine whether $p \to q$ and $q \to p$ are logically equivalent.