Topic 1: Statements

statement: is a declarative sentence that is true or false but not both.

Examples:	It is raining	Not Examples:
	What time is it? $5+3)(3)=6$	Ohio is the nicest state.
	Ohio is the largest state	
	The big dog	
		This sentence is false.

Notation: statements are represented by lowercase letters.
negation: the negation of a statement p, denoted $\sim p$, is a statement with the opposite truth value of p. (i.e. - if p is true then $\sim p$ is false, and if p is false then $\sim p$ is true.)

LOGICAL CONNECTIVES:

- AND: The conjunction of p and q, denoted $p \wedge q$, is the statement " p and q ".
- OR: The disjunction of p and q, denoted $p \vee q$, is the statement " p or q ".
- IF-THEN: An implication (or conditional statement), denoted $p \rightarrow q$, is the statement "If p then q ". (p is called the hypothesis and q is called the conclusion.)
- IF AND ONLY IF: The biconditional statement, denoted $p \leftrightarrow q$, is the statement " p if and only if q ". ($p \leftrightarrow q$ is the conjunction of $p \rightarrow q$ and $q \rightarrow p$.)

Example 1: If p is false and q is true, find the truth values for each of the following:
(a) $p \wedge q$
(h) $\quad \sim(\sim p \wedge q)$
(b) $\quad p \vee q$
(i) $\sim q \wedge \sim p$
(c) $\sim p$
(j) $\quad \sim p \rightarrow q$
(d) $\sim(\sim p)$
(k) $\sim(p \rightarrow q)$
(e) $\quad \sim p \vee q$
(1) $(p \vee q) \rightarrow(p \wedge q)$
(f) $\quad p \wedge \sim q$
(m$) \quad(p \vee \sim p) \rightarrow p$
(g) $\quad \sim(p \vee q)$
(n) $\quad(p \vee q) \leftrightarrow(p \wedge q)$

The converse of $p \rightarrow q$ is $q \rightarrow p$

The inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$

The contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$
logically equivalent: Two statements are logically equivalent when they have the same truth tables.

Example 2: Determine whether $p \rightarrow q$ and $\sim q \rightarrow \sim p$ are logically equivalent.

Example 3: Determine whether $p \rightarrow q$ and $q \rightarrow p$ are logically equivalent.

