DUE: TUESDAY, FEBRUARY 28, 2006 AT THE BEGINNING OF CLASS

1. (2 pts) Let
$$a = f(u - v, v - u)$$
. Show that $\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = 0$.

- 2. (2 pts each) Let $w = f(x, y, z) = e^{x/y} + e^{z/x}$ where $x = \frac{\ln u}{v}$, $y = \ln u$ and $z = \frac{\ln u}{uv}$.
 - (a) Find $\frac{\partial w}{\partial u}$
 - (b) Find $\frac{\partial w}{\partial v}$
- 3. (1 pt each) In the following problems, assume that the equation

$$yz^4 + x^2z^3 = e^{xyz} - 3\cos x^2yz$$

defines z implicitly as a function of x and y.

- (a) Find $\frac{\partial z}{\partial x}$.
- (b) Find $\frac{\partial z}{\partial u}$.
- 4. (2 pts) Find the directional derivative of $f(x,y,z) = x^2y + x\sqrt{1+z}$ at the point (1,2,3) in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.
- 5. (1 pt each) Let $f(x, y, z) = ze^{xy}$.
 - (a) Find the direction in which f increases most rapidly at th point (0,1,2).
 - (b) what is the maximum rate of increase?
- 6. (3 pts) Find the directions in which the directional derivative of $f(x,y)=x^2+\sin xy$ at the point (1,0) has a value of 1.