1. (5 pts) Use cylindrical coordinates to find the volume of the solid that lies within both the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
2. (5 pts) Evaluate the following integral by changing to cylindrical coordinates

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} x y z d z d x d y
$$

3. (5 pts) Use spherical coordinates to evaluate

$$
\iiint_{E} e^{\sqrt{x^{2}+y^{2}+z^{2}}} d V
$$

where E is enclosed by the sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant.
4. (5 pts) Evaluate the following integral by changing to spherical coordinats

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y
$$

5. (5 pts) Sketch the solid region whose volume is given by the iterated integral and evaluate the iterated integral

$$
\int_{0}^{2 \pi} \int_{\pi / 6}^{\pi / 2} \int_{0}^{4} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

