CYLINDRICAL COORDINATES: A point P in 3-dimensional space is represented by the ordered triple (r, θ, z), where r and θ are the polar coordinates of the projection of P onto the xy–plane and z is the directed distance from the xy–plane to P.

To find the cylindrical coordinates for a point (x, y, z), we use the equations

\[
r^2 = x^2 + y^2, \quad \tan \theta = \frac{y}{x}, \quad z = z
\]

To find the rectangular coordinates for a point (r, θ, z) we recall our conversions for polar coordinates and use

\[
x = r \cos \theta, \quad y = r \sin \theta, \quad z = z
\]

EXAMPLE 1:

(a) Plot the point whose cylindrical coordinates are $(1, \frac{\pi}{4}, e)$. Find the rectangular coordinates of the point.

(b) Find cylindrical coordinates of the point with rectangular coordinates $(1, 1, 2)$.
Our primary interest in this coordinate system is that it allows us to express various surfaces in a more simplified manner. It is especially useful for problems involving symmetry about an axis, and the $z-$axis is chosen to coincide with this axis of symmetry. Eventually, this will allow us to simplify certain integrals.

EXAMPLE 2: Describe the surface of constant r, θ, or z.

(a) The equation $\theta = \frac{\pi}{2}$ defines a plane; in fact, in this case the $xy-$plane.

(b) The equation $z = 5$ defines a horizontal plane at a “height” of 5 units.

(c) The equation $r = 4$ defines a cylinder of radius 4 with the axis of symmetry the $z-$axis.

EXAMPLE 3: Write the equation $r = 8 \sin \theta$ into rectangular coordinates.

SPHERICAL COORDINATES: The spherical coordinates (ρ, θ, ϕ) of a point P in space are where ρ is the distance from the origin O to P, θ is the same angle as in the cylindrical coordinates, and ϕ is the angle between the positive $z-$axis and the line segment OP. Therefore,

$$\rho \geq 0 \quad \text{and} \quad 0 \leq \phi \leq \pi.$$

The spherical coordinate systems is especially useful in problems where there is symmetry at a specific point and the origin is placed at this point.
To convert from spherical to rectangular is a little more complicated. First, since \(\rho \) is the distance between the origin and \(P = (x, y, z) \), we obtain \(\rho^2 = x^2 + y^2 + z^2 \). Suppose that \(P \) has \(z > 0 \) and let \(P' = (x, y, 0) \) and let \(Q = (0, 0, z) \) on the \(z \)-axis.

Consider the right triangle formed by \(P, Q \) and the origin. The angle at the origin in this triangle is by definition \(\phi \). One leg of the triangle is the portion of the \(z \)-axis between the origin and the point \(Q \) which has length \(z \). The other leg is the line segment from \(Q \) to \(P \) which using the distance formula has length \(r = \sqrt{x^2 + y^2} \). Using right triangle trigonometry we have \(\cos \phi = \frac{r}{\rho} \) and \(\sin \phi = \frac{z}{\rho} \). Thus, \(r = \rho \sin \phi \) and \(z = \rho \cos \phi \).

For \(P' = (x, y, 0) \) we see that \(r = \sqrt{x^2 + y^2} \) is the distance from \(P' \) to the origin. As in polar coordinates, we have \(x = r \cos \theta \) and \(y = r \sin \theta \). Using \(r = \rho \sin \phi \), we have \(x = \rho \sin \phi \cos \theta \) and \(y = \rho \sin \phi \sin \theta \).

Therefore, to convert from spherical coordinates to rectangular coordinates, we use the following equations:

\[
\begin{align*}
x &= \rho \sin \phi \cos \theta, \\
y &= \rho \sin \phi \sin \theta, \\
z &= \rho \cos \phi
\end{align*}
\]

To convert from rectangular to spherical coordinates, we use

\[
\begin{align*}
\rho^2 &= x^2 + y^2 + z^2, \\
\cos \phi &= \frac{z}{\rho}, \\
\cos \theta &= \frac{x}{\rho \sin \phi}
\end{align*}
\]

EXAMPLE 4:

(a) Find the spherical coordinates of the point with rectangular coordinates \((-1, 1, \sqrt{6})\)

(b) Find the rectangular coordinates of the point with spherical coordinates \((5, \pi, \pi/2)\).

(c) Find the cylindrical coordinates of a point with spherical coordinates \((4, \pi/4, \pi/3)\).
EXAMPLE 5: Describe in words, the surface whose equation is given.

(a) The equation $\rho = 5$ is a sphere centered at the origin with radius 5.

(b) The equation $\theta = \frac{\pi}{3}$ is a half-plane including the $z-$axis and intersecting the $xy-$plane in the half-line $y = \sqrt{3}x, \ x > 0$.

(c) The equation $\phi = \frac{\pi}{2}$ gives the $xy-$plane since $z = 0$ and there is no restriction on x or y.

(d) The equation $\phi = \frac{\pi}{3}$ gives a half-cone with vertex at the origin and axis the positive $z-$axis.

EXAMPLE 6: Sketch the solid described by the given inequalities:

(a) $2 \leq \rho \leq 3, \ \frac{\pi}{2} \leq \phi \leq \pi$

(b) $0 \leq \phi \leq \frac{\pi}{3}, \ \rho \leq 2$

Homework: pp 878–879; 3–45 odd, 55, 58, 59, 61