Vector-Valued Functions: A vector-valued function $r(t)=\langle f(t), g(t), h(t)\rangle$ is a function whose domain is the set of all real numbers and whose range is a set of vectors. Therefore, it assigns to every real number a vector $r(t)$. We write

$$
r(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

where $f(t), g(t)$, and $h(t)$ are called the component functions of the vector function.

Limit of a vector-valued function: The limit of a vector-valued function \mathbf{r} is defined by taking the limits of its component functions. In other words, if $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle
$$

provided the limits of the component functions exist.

Continuous at a : A vector function \mathbf{r} is continuous at a if

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)
$$

Therefore, \mathbf{r} is continuous at a if and only if its component functions f, g, and h are continuous at a.

EXAMPLE 1: Find $\lim _{t \rightarrow 0}\left\langle\frac{e^{t}-1}{t}, \frac{\sqrt{1+t}-1}{t}, \frac{3}{1+t}\right\rangle$.

EXAMPLE 2: Find a vector equation and parametric equations for the line segment the joins the point $P=(1,0,1)$ and $Q=(2,3,1)$.

EXAMPLE 3: Find a vector function that represents the curve of intersection of the two surfaces: The cylinder $x^{2}+y^{2}=4$ and the surface $z=x y$.

