MATH 22005 Derivative and Integrals of Vector Functions SECTION 14.2

Derivative of vector function: The derivative of \mathbf{r}, denoted \mathbf{r}^{\prime}, is defined by

$$
\frac{d \mathbf{r}}{d t}=\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

if the limit exists.

NOTES:

- The vector $\mathbf{r}^{\prime}(t)$ is called the tangent vector to the curve defined by \mathbf{r} at the point P, provided that $\mathbf{r}^{\prime}(t)$ exists and $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$.
- The tangent line to the curve C at the point P is defined to be the line through P parallel to the tangent vector $\mathbf{r}^{\prime}(t)$.

Theorem: If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are differentiable functions, then

$$
\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}
$$

EXAMPLE 1: Find the derivative of the vector function $\mathbf{r}(t)=a t \cos 3 t \mathbf{i}+b \sin ^{3} t \mathbf{j}+c \cos ^{3} t \mathbf{k}$.

EXAMPLE 2: Find parametric equations for the tangent line to the curve with the parametric equations

$$
x=t^{2}-1 \quad y=t^{2}+1 \quad z=t+1
$$

at the point $(3,5,3)$.
smooth: A curve given by $\mathbf{r}(t)$ on an interval I is smooth if \mathbf{r}^{\prime} is continuous and $\mathbf{r}^{\prime}(t) \neq 0$ except possibly at the endpoints of I.
piecewise smooth: A curve is piecewise smooth if it is made up of a finite number of smooth pieces.

Differentiation Rules

1. $\frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$
2. $\frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t)$
3. $\frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$
4. $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)$
5. $\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$
6. $\frac{d}{d t}[\mathbf{u}(f(t))]=\mathbf{u}^{\prime}(f(t)) f^{\prime}(t)$

EXAMPLE 3: Show that if $\|\mathbf{r}(t)\|$ is constant, then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.

EXAMPLE 4: Let $\mathbf{r}(t)=t \mathbf{i}+3 t \mathbf{j}+t^{2} \mathbf{k} \quad$ and $\quad \mathbf{u}(t)=4 t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$. Find $\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]$ and $\frac{d}{d t}[\mathbf{r}(t) \times \mathbf{u}(t)]$.

Integration

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} h(t) d t\right) \mathbf{k}
$$

We can extend the Fundamental Theorem of Calculus to continuous vector functions as follows:

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left.\mathbf{R}(t)\right|_{a} ^{b}=\mathbf{R}(b)-\mathbf{R}(a)
$$

where \mathbf{R} is an antiderivative of \mathbf{r}, that is, $\mathbf{R}^{\prime}(t)=\mathbf{r}(t)$. For indefinite integrals $\int \mathbf{r}(t) d t$ remember to add the vector constant of integration \mathbf{C}.

EXAMPLE 3: Evaluate $\int_{0}^{1}\left(\frac{4}{1+t^{2}} \mathbf{j}+\frac{2 t}{1+t^{2}} \mathbf{k}\right) d t$

