MATH 22005 Motion in space: Velocity and Acceleration SECTION 14.4

Velocity and Acceleration: Suppose that a particle moves through space so that its position vector at any time t is given by $\mathbf{r}(t)$. Then the velocity vector $\mathbf{v}(t)$ at time t is given by

$$
\mathbf{v}(t)=\lim _{h \rightarrow 0}=\frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

The velocity vector is also the tangent vector and points in the direction of the tangent line. The magnitude of the velocity vector, $\|\mathbf{v}(t)\|$, is the speed of the particle at time t. The acceleration os the particle is defined as the derivative of the velocity. Therefore,

$$
\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)
$$

From the vector integrals in section 14.2, we have

$$
\mathbf{r}(t)=\int \mathbf{v}(t) d t \quad \text { and } \quad \mathbf{v}(t)=\int \mathbf{a}(t) d t
$$

EXAMPLE 1: Find the velocity, acceleration, and speed of a particle with position vector $\mathbf{r}(t)=$ $\langle 2-5,4 \sqrt{t}\rangle$. Sketch the path of the particle and draw the velocity and acceleration vectors for $t=1$.

EXAMPLE 2: Find the velocity, acceleration, and speed of a particle with position function $\mathbf{r}(t)=t \sin t \mathbf{i}+t \cos t \mathbf{j}+t^{2} \mathbf{k}$.

EXAMPLE 3: Find the velocity and position vectors of a particle that has acceleration vector $\mathbf{a}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\cos 2 t \mathbf{k}$ and initial velocity $\mathbf{v}(0)=\mathbf{i}+\mathbf{k}$ and initial position $\mathbf{r}(0)=2 \mathbf{i}+3 \mathbf{j}$.

Tangential and Normal Components of Acceleration:

We will now resolve the acceleration into two components - one in the direction of the tangent and one in the direction of the normal. If we let $v=\|\mathbf{v}(t)\|$, the tangential component of acceleration, denoted a_{T}, is given by

$$
a_{T}=v^{\prime}=\frac{\mathbf{v} \cdot \mathbf{a}}{v}=\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

The normal component of acceleration, denoted a_{N}, is given by

$$
a_{N}=\kappa v^{2}=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

EXAMPLE 4: A particle moves with position function $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+3 t \mathbf{k}$. Find the tangential and normal components of acceleration.

