Function of Two Variables: A function of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted $f(x, y)$. The set D is the domain of f and its range is the set $\{f(x, y) \mid(x, y) \in D\}$. So, a function of two variables is a function whose domain is a subset of \mathbb{R}^{2} and whose range is a subset of \mathbb{R}. We sometimes write $z=f(x, y)$ to make explicit the value that f takes at the general point (x, y)

EXAMPLE 1: Evaluate the following functions.

1. Let $f(x, y)=\frac{3 x+y}{2 y-x}$. Find $f(2,-1)$.
2. Let $f(x, y)=e^{7 x y^{2}}$. Find $f(3,2)$.
example 2: Find and sketch the domain of the following functions.
3. $f(x, y)=\frac{x-3 y}{x+3 y}$
4. $f(x, y)=f(x, y)=\sqrt{x^{2}+y^{2}-1}+\ln \left(4-x^{2}-y^{2}\right)$

The graph of a function of two variables is the set $\{(x, y, z) \mid z=f(x, y)$ where $(x, y) \in D\}$. This means that the graph is a surface $z=f(x, y)$ in \mathbb{R}^{3}.

EXAMPLE 3: Sketch the graph of the following functions.

1. $f(x, y)=\cos x$
2. $f(x, y)=2+y^{2}$

Another method for visualizing functions is a contour map on which points of constant elevation are joined to form level curves. The level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant (in the range of f.) A level curve $f(x, y)=k$ is the set of all points in the domain of f at which f takes on a given value k. In other words, it shows were the graph of f has a height of k.

EXAMPLE 4: Draw a contour map of $f(x, y)=\sqrt{x^{2}+y^{2}}$ showing several level curves.

Functions of three variables: A function of three variables is a rule that assigns to each ordered triple (x, y, z) in the domain D a subset of \mathbb{R}^{3} a unique real number w denoted by $f(x, y, z)$. (Note that similar definitions exist of functions of n variables). The graph of such a function is defined to be $\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid w=f(x, y, z)\right\}$. However, drawing this is impossible since it exists in four-dimensional space. However, we can draw the level surfaces for such a function. These are the surfaces with equations $f(x, y, z)=k$ where k is a constant. If the point (x, y, z) moves along a level surface, the value of $f(x, y, z)$ remains fixed.

EXAMPLE 5: Let $f(x, y, z)=3-x y+y z^{2}$. Find $f(-2,1,5)$.

EXAMPLE 6: Find the level surfaces of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$.

Homework: pp 934-936; 7-25 odd, 29, 35, 39-43 odd, 59

