Partial Derivatives of a function of two variables: If $z=f(x, y)$, then the first partial derivatives of f with respect to x and y are the functions f_{x} and f_{y} defined by

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

This definition indicates that if $z=f(x, y)$, then to find f_{x} you consider y constant and differentiate with respect to x. Similarly, to find f_{y} you consider x constant and differentiate with respect to y.

Notation of first partial derivatives: For $z=f(x, y)$, the partial derivatives f_{x} and f_{y} are denoted by

$$
f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=z_{x}=\frac{\partial z}{\partial x}=f_{1}=D_{1} f=D_{x} f
$$

and

$$
f_{y}(x, y)=f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f(x, y)=z_{y}=\frac{\partial z}{\partial y}=f_{2}=D_{2} f=D_{y} f
$$

Partial Derivatives of functions of more than two variables: Partial derivatives can also be defined for functions of three or more variables. In general, if u is a function of n variables, $u=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, its partial derivative with respect to the i th variable is defined by

$$
\frac{\partial u}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}+h, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)}{h}
$$

We can also use the notation

$$
\frac{\partial u}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}=f_{x_{i}}=f_{i}=D_{i} f
$$

EXAMPLE 1: If $f(x, y)=x^{5}+3 x^{2} y^{4}+3 x y^{4}$ find the first partial derivative of f.

EXAMPLE 2: If $f(x, y, z, t)=\frac{x y^{2}}{t+2 z}$ find the first partial derivatives of f.

Higher Partial Derivatives: If f is a function of two variables, then its partial derivatives are also functions of two variables and therefore, we can consider their partial derivatives. If $z=f(x, y)$, then the second partial derivatives of f are given by

$$
\begin{aligned}
& \left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
& \left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
& \left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
& \left(f_{y}\right)_{y}=f_{y y}=f_{22}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
\end{aligned}
$$

NOTE: The notation $f_{x y}$ means that you first differentiate with respect to x and then with respect to y. The notation $f_{y x}$ means that you differentiate with respect to y and then with respect to x. Partial derivatives of order 3 and higher can be defined similarly.

EXAMPLE 3: Find all second partial derivatives of $f(x, y)=\ln (3 x+5 y)$

EXAMPLE 4: Find all second partial derivatives of $f(x, y)=x^{4} y^{2}-2 x y^{5}$.

EXAMPLE 5: For $f(x, y, z)=x \ln \left(x y^{2} z^{3}\right)$ find $f_{x y y}$ and $f_{x y z}$.

Laplace's Equation: Laplace's equation is the partial differentiation equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Note that this equation can also be stated as

$$
u_{x x}+u_{y y}=0
$$

Solutions of this equation are called harmonic functions. Harmonic functions play a role in problems of heat conduction, fluid flow, and electric potential.

EXAMPLE 6: Determine if $f(x, y)=e^{y} \sin x$ is a solution of Laplace's equation.

The wave equation is given by

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

This describes the motion of a waveform which could be an ocean wave, a sound wave, a light wave, or a wave travelling along a vibrating string.

EXAMPLE 7: Show that $u=\sin (k x) \sin (a k t)$ is a solution of the wave equation.

