MATH 22005 Tangent Planes and Linear Approximations SECTION 15.4

Tangent plane: at a point P is the plane that most closely approximates the surface S near the point P.

Equation of the tangent plane: Suppose that f has continuous partial derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

or

$$
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

EXAMPLE 1: Find an equation of the tangent plane to the surface $z=9 x^{2}+y^{2}+6 x-3 y+5$ at the point $(1,2,18)$.

Linear Approximations: Suppose the surface $z=f(x, y)$ has the tangent plane $z=a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+z_{0}$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ as above. Then we say that the function

$$
L(x, y)=a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+z_{0}
$$

or

$$
L(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is a linear approximation to $f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$.

EXAMPLE 2: The linear approximation to $f(x, y)=9 x^{2}+y^{2}+6 x-3 y+5$ at the point $(1,2)$ is $L(x, y)=24 x+y-8$. Compare $L(1.01,2.03)$ and $f(1.01,2.03)$.

Recall that for a function in one variable $y=f(x)$ if x changes from a to $a+\Delta x$, we define the increment of y as $\Delta y=f(a+\Delta x)-f(a)$. We then showed that if f is differentiable at a, then

$$
\Delta y=f^{\prime}(a) \Delta x+\varepsilon \Delta x \quad \text { where } \quad \varepsilon \rightarrow 0 \quad \text { as } \quad \Delta x \rightarrow 0
$$

For a function of two variable $z=f(x, y)$ if we let x change from a to $a+\Delta x$ and y changes from b to $b+\Delta y$, then the corresponding increment of z is defined as $\Delta z=f(a+\Delta x, b+\Delta y)-$ $f(a, b)$. Therefore, the increment Δz represents the change in the value of f when (x, y) changes from (a, b) to $(a+\Delta x, b+\Delta y)$.

Differentiable: If $z=f(x, y)$, then f is differentiable at (a, b) if Δz can be expressed in the form

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

NOTE: A differentiable function is one for which the linear approximation is a good approximation when (x, y) is near (a, b). This means that the tangent plane approximates the graph of f well near the point of tangency.

Theorem: If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Differentials: Recall that for a differentiable function of one variable $y=f(x)$ we define the differential $d x$ to be an independent variable. The differential of y is then defined as $d y=f^{\prime}(x) d x$. For a function of two variables $z=f(x, y)$ we define the differentials $d x$ and $d y$ to be independent variables. Then the differential $d z$, also called total differential, is defined by

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

EXAMPLE 3: Find $d z$ for $z=x e^{x y}$.

EXAMPLE 4: Find $d w$ for $w=f(x, y, z)=x y^{3}+y z^{3}$.

EXAMPLE 5: Let $z=x^{2}+3 x y-y^{2}$. If x changes from 2 to 2.05 and y changes from 3 to 2.96 , compare the values of $d z$ and Δz.

