The Chain Rule (Case 1): Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

EXAMPLE 1: Use the chain rule to find $\frac{d z}{d t}$ where $z=\sqrt{x^{2}+y^{2}}, \quad x=e^{2 t}, \quad y=e^{-2 t}$.
example 2: Suppose that $z=4 x^{2} y^{3}$ where $x=\sin t$ and $y=\cos t$. Find $\frac{d z}{d t}$ when $t=\pi$.

The Chain Rule (Case 2): Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions of s and t. Then

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

EXAMPLE 3: Use the chain rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ where $z=e^{x y} \tan y, \quad x=s+2 t, \quad y=s / t$.

The Chain Rule (Generalized Version): Suppose that u is a differentiable function of n variables $x_{1}, x_{2}, \ldots, x_{n}$ and each x_{i} is a differentiable function of the m variables $t_{1}, t_{2}, \ldots, t_{m}$. Then u is a function of $t_{1}, t_{2}, \ldots, t_{m}$ and

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}
$$

for each $t=1,2, \ldots, m$.

EXAMPLE 4: If $u=x^{4} y+y^{2} z^{3}$, where $x=r s e^{t}, \quad y=r s^{2} e^{-t}$, and $z=r^{2} s \sin t$, find the value of $\frac{\partial u}{\partial s}$ when $r=2, \quad s=1, \quad t=0$.

The Chain Rule (Implicit Differentiation): If the equation $F(x, y)=0$ defines y implicitly as a differentiable function of x, then

$$
\frac{d y}{d x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)}, \quad F_{y}(x, y) \neq 0
$$

If the equation $F(x, y, z)=0$ defines z implicitly as a differentiable function of x and y, then

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}(x, y, z)}{F_{z}(x, y, z)} \quad \text { and } \quad \frac{\partial z}{\partial y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)}, \quad F_{z}(x, y, z) \neq 0
$$

EXAMPLE 5: Find $\frac{d y}{d x}$ given that $y^{5}+x^{2} y^{3}=1-y e^{x^{2}}$.

EXAMPLE 6: Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ given that $3 x^{2} z-x^{2} y^{2}+2 z^{3}+3 y z-5=0$.

Homework: pp 974-975; 1-13 odd, 19-33 odd, 43, 47

