MATH 22005

Recall that if z = f(x, y), then the partial derivatives f_x and f_y are defined as

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$
$$f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

and represent the rates of changes of z in the x and y directions; that is, in the direction of the unit vectors **i** and **j**.

We know are interested in finding the derivative of this functions in any direction we wish. To do this, we let $\mathbf{u} = \langle a, b \rangle$ be a unit vector. Suppose we wish to walk exactly h units in the direction of \mathbf{u} ; namely, $h\mathbf{u}$. If we start at the point (x_0, y_0) and walk h units in the direction of \mathbf{u} , we arrive at $(x_0 + ha, y_0 + hb)$. The difference of these two elevations is the elevation change. Therefore, the rate of change we seek is

$$\lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

Directional Derivative: The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

We think of this as the slope of z = f(x, y) at (x_0, y_0) if we face in the direction of **u**. Note that $D_{\mathbf{i}}f = f_x$ and $D_{\mathbf{j}}f = f_y$.

When computing the directional derivative of a function defined by a formula, we generally use the following theorem.

Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0)a + f_y(x_0, y_0)b$$

If the unit vector **u** make an angle θ with the positive x-axis, then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ and the formula in the above theorem becomes

$$D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0)\cos\theta + f_y(x_0, y_0)\sin\theta$$

EXAMPLE 1: Let
$$f(x,y) = x^3 + 3xy^2$$
. Find $D_{\mathbf{u}}f(x,y)$ at $(2,1)$ if $\mathbf{u} = \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$.

EXAMPLE 2: Let $f(x, y) = \sqrt{x^2 + y^2}$. Find the directional derivative at the point (4, 4) in the direction of $\theta = 45^{\circ}$ and $\theta = 135^{\circ}$.

Gradient: Note that the directional derivative $D_{\mathbf{u}}f(x, y)$ is actually the dot product of the vector $\langle f_x(x, y), f_y(x, y) \rangle$ and the vector $\mathbf{u} = \langle a, b \rangle$. The first vector is important and occurs in various contexts. Therefore, it is given a name, the **gradient** of f, and a special symbol ∇f . Therefore, if f is a function of two variable x and y, then the **gradient** of f is the vector function ∇f defined by

grad
$$f = \nabla f = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

Using this notation, the directional derivative $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$.

EXAMPLE 3: Let $f(x,y) = x^2y^3 - 4y$. Compute $\nabla f(2,-1)$ and $D_{\mathbf{u}}f(2,-1)$ where $\mathbf{u} = 2\mathbf{i} + 5\mathbf{j}$.

NOTE: All above definitions and formulas can be extended to functions of three variables.

Maximizing the directional derivative: Suppose we consider all possible directional derivatives of f at a given point. In which of these directions does f change fastest and what is the maximum rate of change?

Theorem: Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}}f(x, y)$ is $\|\nabla f(x, y)\|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(x, y)$.

EXAMPLE 4: Suppose that the temperature at a point is given by $T(x, y, z) = \frac{80}{1 + x^2 + 2y^2 + 3z^2}$, where T is measured in Celsius and x, y, z in meters.

• In which direction does the temperature increase fastest at the point (1, 1, -2)?

• What is the maximum rate of increase?

Tangent Planes to Level Surfaces: It can be shown that the gradient vector at (x_0, y_0, z_0) , is perpendicular to the tangent vector to any curve C on the surface that passes through (x_0, y_0, z_0) . Thus, if $\nabla F(x_0, y_0, z_0) \neq \mathbf{0}$, we define the **tangent plane to the level surface** F(x, y, z) = k**at** (x_0, y_0, z_0) as the plane that passes through (x_0, y_0, z_0) and has normal vector $\nabla F(x_0, y_0, z_0)$. Therefore, the equation of this tangent plane is

 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$

Normal Line: The **normal line** to the surface S at the point (x_0, y_0, z_0) is the line passing through (x_0, y_0, z_0) and perpendicular to the tangent plane. The direction of the normal line is therefore given by the gradient vector $\nabla F(x_0, y_0, z_0)$ and its symmetric equations are

$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}.$$

EXAMPLE 5: Given $x = y^2 + z^2 - 2$. Find

• the tangent plane to the surface at (-1, 1, 0)

• the normal line to the surface at (-1, 1, 0)

Homework: pp 986–988; 5–25 odd, 29, 33, 39, 41