Recall that if $z=f(x, y)$, then the partial derivatives f_{x} and f_{y} are defined as

$$
\begin{aligned}
f_{x}\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
f_{y}\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

and represent the rates of changes of z in the x and y directions; that is, in the direction of the unit vectors \mathbf{i} and \mathbf{j}.

We know are interested in finding the derivative of this functions in any direction we wish. To do this, we let $\mathbf{u}=\langle a, b\rangle$ be a unit vector. Suppose we wish to walk exactly h units in the direction of \mathbf{u}; namely, $h \mathbf{u}$. If we start at the point $\left(x_{0}, y_{0}\right)$ and walk h units in the direction of \mathbf{u}, we arrive at $\left(x_{0}+h a, y_{0}+h b\right)$. The difference of these two elevations is the elevation change. Therefore, the rate of change we seek is

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h} .
$$

Directional Derivative: The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists.
We think of this as the slope of $z=f(x, y)$ at $\left(x_{0}, y_{0}\right)$ if we face in the direction of \mathbf{u}. Note that $D_{\mathbf{i}} f=f_{x}$ and $D_{\mathbf{j}} f=f_{y}$.

When computing the directional derivative of a function defined by a formula, we generally use the following theorem.

Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b\rangle$ and

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b
$$

If the unit vector \mathbf{u} make an angle θ with the positive x-axis, then we can write $\mathbf{u}=\langle\cos \theta, \sin \theta\rangle$ and the formula in the above theorem becomes

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \cos \theta+f_{y}\left(x_{0}, y_{0}\right) \sin \theta
$$

EXAMPLE 1: Let $f(x, y)=x^{3}+3 x y^{2}$. Find $D_{\mathbf{u}} f(x, y)$ at $(2,1)$ if $\mathbf{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.

EXAMPLE 2: Let $f(x, y)=\sqrt{x^{2}+y^{2}}$. Find the directional derivative at the point $(4,4)$ in the direction of $\theta=45^{\circ}$ and $\theta=135^{\circ}$.

Gradient: Note that the directional derivative $D_{\mathbf{u}} f(x, y)$ is actually the dot product of the vector $\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle$ and the vector $\mathbf{u}=\langle a, b\rangle$. The first vector is important and occurs in various contexts. Therefore, it is given a name, the gradient of f, and a special symbol ∇f. Therefore, if f is a function of two variable x and y, then the gradient of f is the vector function ∇f defined by

$$
\operatorname{grad} f=\nabla f=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

Using this notation, the directional derivative $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}$.
example 3: Let $f(x, y)=x^{2} y^{3}-4 y$. Compute $\nabla f(2,-1)$ and $D_{\mathbf{u}} f(2,-1)$ where $\mathbf{u}=2 \mathbf{i}+5 \mathbf{j}$.

NOTE: All above definitions and formulas can be extended to functions of three variables.

Maximizing the directional derivative: Suppose we consider all possible directional derivatives of f at a given point. In which of these directions does f change fastest and what is the maximum rate of change?

Theorem: Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}} f(x, y)$ is $\|\nabla f(x, y)\|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(x, y)$.

EXAMPLE 4: Suppose that the temperature at a point is given by $T(x, y, z)=\frac{80}{1+x^{2}+2 y^{2}+3 z^{2}}$, where T is measured in Celsius and x, y, z in meters.

- In which direction does the temperature increase fastest at the point $(1,1,-2)$?
- What is the maximum rate of increase?

Tangent Planes to Level Surfaces: It can be shown that the gradient vector at (x_{0}, y_{0}, z_{0}), is perpendicular to the tangent vector to any curve C on the surface that passes through (x_{0}, y_{0}, z_{0}). Thus, if $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, we define the tangent plane to the level surface $F(x, y, z)=k$ at $\left(x_{0}, y_{0}, z_{0}\right)$ as the plane that passes through $\left(x_{0}, y_{0}, z_{0}\right)$ and has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$. Therefore, the equation of this tangent plane is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

Normal Line: The normal line to the surface S at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is the line passing through $\left(x_{0}, y_{0}, z_{0}\right)$ and perpendicular to the tangent plane. The direction of the normal line is therefore given by the gradient vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ and its symmetric equations are

$$
\frac{x-x_{0}}{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{y-y_{0}}{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{z-z_{0}}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)} .
$$

example 5: Given $x=y^{2}+z^{2}-2$. Find

- the tangent plane to the surface at $(-1,1,0)$
- the normal line to the surface at $(-1,1,0)$

