The Method of Lagrange Multipliers is a technique used for solving certain kinds of optimization problems where we have to find the maximum or minimum value of a function $f(x, y, z)$ subject to a "constraint" equation $g(x, y, z)=k$.

Lagrange Multiplier: If $f(x, y, z)$ and $g(x, y, z)$ have continuous partial derivatives and (a, b, c) is a local extremum for f when restricted to $g(x, y, z)=k$, then there is a number λ called a Lagrange Multiplier such that

$$
\nabla f(a, b, c)=\lambda \nabla g(a, b, c)
$$

Method of Lagrange Multipliers: To find the maximum and minimum values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$ (assuming these extremum values exist and $\nabla g \neq \mathbf{0}$ on the surface of $g(x, y, z)=k)$;

1. Find all values of x, y, z, and λ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z) \quad \text { and } \quad g(x, y, z)=k
$$

2. Evaluate f at all points (x, y, z) that result from step 1 . The largest of these values is the maximum value of f; the smallest of these values is the minimum value of f.

EXAMPLE 1: Use Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=4 x+6 y$ subject to the constraint $x^{2}+y^{2}=13$.

