<u>Definition of Definite Integral</u>: If f is continuous function defined for $a \le x \le b$, we divide [a,b] into n subintervals of equal width $\Delta x = \frac{b-a}{n}$. We let $x_0 = a, x_1, x_2, \ldots, x_n = b$ be the endpoints of these subintervals. Next, we choose sample points $x_1^*, x_2^*, \ldots, x_n^*$ in these subintervals, so x_i^* lies in the i-th subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f from a to b is

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Remarks:

- 1. \int is called the integral, and f(x) is called the integrand. a is called the lower limit of integration and b is the upper limit of integration. $\sum_{i=1}^{n} f(x_i^*) \Delta x$ is called the **Riemann Sum**.
- 2. If f is positive, then $\int_a^b f(x) \ dx$ is the area under the curve y = f(x) from x = a to x = b.

Double Integrals: Our goal is to develop a similar notation for double integrals. Here, f would be a function of two variables that is defined on a closed rectangle in the xy-plane. For example, suppose f is continuous on $R = [a, b] \times [c, d] = \{(x, y) \mid a \le x \le b, c \le y \le d\}$. The double integral would give us the volume of the solid whose base is the rectangle R and which is bounded above by the surface z = f(x, y).

The first step is the divide the interval [a, b] into m equal subintervals $[x_{i-1}, x_i]$ each of width Δx and to divide the interval [c, d] into n equal subintervals $[y_{j-1}, y_j]$ each of width Δy . Thus, $1 \le i \le m$ and $1 \le j \le n$. This means that we have divided the rectangle R into subrectangles where the ij-th rectangle is given by

$$R_{ij} = \{ (x, y) \mid x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_j \} = [x_{i-1}, x_i] \times [y_{j-1}, y_j].$$

Next, we select any point (x_{ij}^*, y_{ij}^*) in the rectangle R_{ij} . We let ΔA be the area of each subrectangle; hence, $\Delta A = \Delta x \Delta y$. Imagine each subinterval as a rectangular box with height $f(x_{ij}^*, y_{ij}^*)$ and area of base given by ΔA . The volume of this box is then given by $f(x_{ij}^*, y_{ij}^*)\Delta A$.

If we sum all of these rectangular boxes we obtain the **Riemann Sum** for the function f on the rectangle R is given by

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A = \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta x \Delta y.$$

One can see that the more rectangular boxes we have, the better approximation we have to the volume we are after. Hence, we want to take the limit as both $m \to \infty$ and $n \to \infty$.

Definition: The **double integral** of f over the rectangle R is

$$\iint\limits_{\mathcal{B}} f(x,y)dA = \lim\limits_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$$

if this limit exists. (If this limit exists, we say that f is **integrable** over R).

Properties of Double Integrals: Let f and g be continuous over a closed, bounded plane region of R, and let c be a constant.

•
$$\iint\limits_R cf(x,y) \ dA = c \iint\limits_R f(x,y) \ dA$$

•
$$\iint\limits_R \left[f(x,y) \pm g(x,y) \right] \ dA = \iint\limits_R f(x,y) \ dA \pm \iint\limits_R g(x,y) \ dA.$$

•
$$\iint\limits_{\mathbb{R}} f(x,y) \ dA \ge 0, \qquad \text{if } f(x,y) \ge 0$$

•
$$\iint\limits_R f(x,y) \ dA \ge \iint\limits_R g(x,y) \ dA,$$
 if $f(x,y) \ge g(x,y)$

•
$$\iint\limits_R f(x,y) \ dA = \iint\limits_{R_1} f(x,y) \ dA + \iint\limits_{R_2} f(x,y) \ dA$$
 where R is the union of two nonoverlapping subregions R_1 and R_2 .