Iterated Integral: An iterated integral is an expression of the following form:

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \text { or } \int_{c}^{d} \int_{a}^{b} f(x, y) d y d x
$$

We interpret these as

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d x\right) d y
$$

That is, you do the inside integral first and then the outside integral. In the above example, for the inside integral you fix y to be a constant and integrate with respect to x. So, the inside integral when it is evaluated will be a function of y. Then this is the integrand in the outside integral which you then integrate with respect to y.

EXAMPLE 1: Evaluate $\int_{0}^{3} \int_{0}^{2}\left(x^{2} y+4 x y^{3}\right) d y d x$.

EXAMPLE 2: Evaluate $\int_{0}^{2} \int_{0}^{3}\left(x^{2} y+4 x y^{3}\right) d x d y$.

Fubini's Theorem: If f is continuous on the rectangle $R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

EXAMPLE 3: Evaluate $\int_{1}^{2} \int_{0}^{\pi} y \sin (x y) d y d x$

EXAMPLE 4: Calculate the double integral $\iint_{R} \frac{x}{x^{2}+y^{2}} d A$ where $R=[1,2] \times[0,1]$.

EXAMPLE 5: Find the volume of the solid that lies under the hyperbolic paraboloid $z=4+x^{2}-y^{2}$ and above the square $R=[-1,1] \times[0,2]$.

EXAMPLE 6: Find the volume of the solid enclosed by the surface $z=1+e^{x} \sin y$ and the planes $x= \pm 1, y=0, y=\pi$, and $z=0$.

