In this section we wish to consider double integrals $\iint_{D} f(x, y) d A$ where D is a bounded region more general than a rectangle.

TYPE I: A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, that is

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

where $g_{1}(x)$ and $g_{2}(x)$ are continuous on $[a, b]$.

Theorem: If f is continuous on a type I region D, such that

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

EXAMPLE 1: Evaluate $\iint_{D} \frac{4 y}{x^{3}+2} d A$ where $D=\{(x, y) \mid 1 \leq x \leq 2,0 \leq y \leq 2 x\}$.

TYPE II: A plane region D is said to be of type II if it lies between the graphs of two continuous functions of y, that is

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

where $h_{1}(y)$ and $h_{2}(y)$ are continuous on $[c, d]$.

Theorem: If f is continuous on a type II region D, such that

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

EXAMPLE 2: Evaluate $\iint_{D} x \sqrt{y^{2}-x^{2}} d A$ where $D=\{(x, y) \mid 0 \leq y \leq 1,0 \leq x \leq y\}$.

EXAMPLE 3: Find the volume of the solid under the surface $z=2 x+y^{2}$ and above the region bounded by $x=y^{2}$ and $x=y^{3}$.

EXAMPLE 4: Find the volume of the solid bounded by the planes $z=x, y=x, x+y=2$, and $z=0$.

EXAMPLE 5: Evaluate $\int_{0}^{1} \int_{x}^{1} \sin y^{2} d y d x$

EXAMPLE 6: Evaluate the integral by reversing the order of integration.

$$
\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} d x d y
$$

Homework: pp 1038-1039; 7-27 every other odd (eoo), 37-47 odd

