Some double integrals are much easier to evaluate in polar form than in rectangular form. This is especially true for regions such as circles and cardioids, and for integrands involving $x^{2}+y^{2}$.

Recall that the polar coordinates (r, θ) of a point are related to the rectangular coordinates (x, y) by the equations:

$$
r^{2}=x^{2}+y^{2} \quad x=r \cos \theta \quad y=r \sin \theta \quad \tan \theta=\frac{y}{x} .
$$

Polar Rectangle: is a region of the form $R=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}$.

Change to Polar Coordinates in a Double Integral: If f is continuous on a polar rectangle R given by

$$
0 \leq a \leq r \leq b, \quad \alpha \leq \theta \leq \beta, \quad \text { where } \quad 0 \leq \beta-\alpha \leq 2 \pi
$$

then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

NOTE: this theorem says that we can convert from rectangular to polar coordinates in a double integral by writing $x=r \cos \theta$ and $y=r \sin \theta$, using the appropriate limits of integration for r and θ, and replacing $d A$ by $r d r d \theta$.

EXAMPLE 1: Evaluate $\iint_{R}(x+y) d A$ where R is the region that lies to the left of the y-axis between the circles of $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

EXAMPLE 2: Find the volume of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y$-plane.

Theorem: If f is continuous on a polar region of the form

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

then

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

EXAMPLE 3: Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$.

EXAMPLE 4: Evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d x d y$.

EXAMPLE 5: Find the volume under $z=x^{2}+y^{2}$ and above the region D shaded below:

