In section 9.2 we calculated the surface area of a surface of revolution. In this section, we will calculate the surface area of a surface given by $z=f(x, y)$.

Area of a Surface: If f and its first partial derivatives are continuous on the closed region D in the $x y$-plane, then the area of the surface given by $z=f(x, y)$ over D is given by

$$
A(S)=\iint_{D} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
$$

EXAMPLE 1: Find the area of the part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$ and $(2,1)$.

EXAMPLE 2: Find the area of the part of the surface of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane.

