We will now define a triple integral for functions of three variables. First, we consider the case where f is defined over a rectangular box B for which

$$
B=\{(x, y, z) \mid a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\}
$$

Triple Integral: The triple integral of f over the box B is

$$
\iiint_{B} f(x, y, z) d V=\lim _{t, m, n \rightarrow \infty} \sum_{i=1}^{t} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V
$$

provided this limit exists.

Theorem: If f is continuous on the rectangular box $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

EXAMPLE 1: Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1}(x+y) d x d y d z$

EXAMPLE 2: Evaluate $\int_{1}^{2} \int_{1}^{y} \int_{1}^{x+y} 12 x d z d x d y$.

Triple Integrals over a general bounded region E

Type 1 region: A solid region E is said to be of type 1 if it lies between the graphs of two continuous functions of x and y. That is,

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

where D is the projection of E onto the $x y$-plane. (Note that $z=u_{1}(x, y)$ is the top surface and $z=u_{2}(x, y)$ is the bottom surface). In this case,

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A .
$$

We now turn our attention to the plane region D. If D can be described as

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

then the integral described above becomes

$$
\iiint_{E} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d y d x
$$

Likewise, if D can be described as

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

then the integral above becomes

$$
\iiint_{E} f(x, y, z) d V=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d x d y
$$

Type 2 region: A solid region E is of type 2 if it is of the form

$$
E=\left\{(x, y, z) \mid(y, z) \in D, u_{1}(y, z) \leq x \leq u_{2}(y, z)\right\}
$$

where D is the projection of E onto the $y z$-plane. (Note that $x=u_{1}(y, z)$ is the back surface and $x=u_{2}(y, z)$ is the front surface). In this case,

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A .
$$

Type 3 region: A solid region E is of type 3 if it is of the form

$$
E=\left\{(x, y, z) \mid(x, z) \in D, u_{1}(x, z) \leq y \leq u_{2}(x, z)\right\}
$$

where D is the projection of E onto the $x z$-plane. (Note that $y=u_{1}(x, z)$ is the left surface and $y=u_{2}(x, z)$ is the right surface). In this case,

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A .
$$

NOTE: To find the limits for a particular order of integration, you generally first determine the innermost limits, which may be functions of the outer two variables. Then, by projecting the solid E onto the coordinate plane of the two outer two variables, you can then determine their limits of integration using the methods described for double integrals.

EXAMPLE 3: Let E be the solid region in the first octant between the graphs of $z=x^{2}+2 y+1$ and $z=y+2$. Set up the triple integral used to find the volume of E.

EXAMPLE 4: Evaluate $\iiint_{E} y d V$, where E is bounded by the planes $x=0, y=0, z=0$, and $2 x+2 y+z=4$.

EXAMPLE 5: Write five other iterated integrals that are equal to $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) d z d y d x$.

