Jacobian: The Jacobian of the transformation T given by $x=g(u, v)$ and $y=h(u, v)$ is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

If the transformation T is given by $x=g(u, v, w), \quad y=h(u, v, w), \quad z=k(u, v, w)$, then the Jacobian of T is the following 3×3 determinant:

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

EXAMPLE 1: Find the Jacobian of the transformation: $x=e^{u-v}, y=e^{u+v}, z=e^{u+v+w}$.

Change of Variables in a Double Integral: Suppose that T is a C^{1} transformation whose Jacobian is nonzero and that maps a region S in the $u v$-plane onto a region R in the $x y$-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except perhaps on the boundary of S. Then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

EXAMPLE 2: Use the given transformation to evaluate the integral:

$$
\iint_{R}(4 x+8 y) d A
$$

where R is the parallelogram with vertices $(-1,3),(1,-3),(3,-1),(1,5)$ and $x=\frac{1}{4}(u+v)$, $y=\frac{1}{4}(v-3 u)$.

EXAMPLE 3: Evaluate the integral $\iint_{R} e^{(x+y) /(x-y)} d A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,-2)$, and $(0,-1)$.

Triple Integrals: Let T be a transformation that maps the region S in the $u v w$-space onto the region R in $x y z$-space by means of the equations

$$
x=g(u, v, w), \quad y=h(u, v, w), \quad z=k(u, v, w) .
$$

The Jacobian of T is the following 3×3 determinant:

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{ccc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Therefore, under similar hypotheses as in the previous theorem, we have

$$
\iiint_{R} f(x, y, z) d V=\iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

