Line integral: If f is defined on a smooth curve C given by $x=x(t), y=y(t), a \leq t \leq b$, then the line integral of f along C is

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

where $\left(x_{i}^{*}, y_{i}^{*}\right)$ is a point in the i th subarc s_{i} which has length Δs_{i}.
If f is a continuous function, then the limit in the above definition always exists and the following formula can be used to evaluate the line integral:

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

NOTE: The value of the integral does not depend on the parametrization of the curve.

If C is a piece-wise smooth curve; that is, C is the union of a finite number of smooth curves $C_{1}, C_{2}, \ldots, C_{n}$ where the initial point of C_{i+1} is the terminal point of C_{i}, then the integral of f along C is the sum of the integrals of f along each of the smooth pieces of C :

$$
\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\cdots+\int_{C_{n}} f(x, y) d s
$$

Line integrals of f along C with respect to x and y : The line integrals with respect to x and y can be evaluated by expressing everything in terms of $t: x=x(t), y=y(t)$, $d x=x^{\prime}(t) d t, d y=y^{\prime}(t) d t$.

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
\end{aligned}
$$

Sometimes it happens that the line integrals with respect to x and y occur together. Therefore, it is abbreviated

$$
\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y=\int_{C} P(x, y) d x+Q(x, y) d y
$$

EXAMPLE 1: Evaluate the line integral $\int_{C} x^{2} z d s$ where C is the line segment from $(0,6,-1)$ to $(4,1,5)$.

EXAMPLE 2: Evaluate the line integral $\int_{C} \sin x d x+\cos y d y$ where C consists of the top half of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(-1,0)$ and the line segment from $(-1,0)$ to $(-2,3)$.

EXAMPLE 3: Find the mass of a spring in the shape of the circular helix

$$
\mathbf{r}(t)=\frac{1}{\sqrt{2}}(\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}), \quad 0 \leq t \leq 6 \pi
$$

where the density of the spring is $\rho(x, y, z)=1+z$.

Line integrals of Vector Fields: One of the most important physical applications of line integrals is that of finding the work done on an object moving in a force field. The total work done is given by

$$
W=\int_{C} \mathbf{F}(x, y, z) \cdot \mathbf{T}(x, y, z) d s
$$

where $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}$. Note that

$$
\mathbf{F} \cdot \mathbf{T} d s=\mathbf{F} \cdot \frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t=\mathbf{F} \cdot d \mathbf{r}
$$

Let \mathbf{F} be a continuous vector field defined on a smooth curve C given by the vector function $\mathbf{r}(t), a \leq t \leq b$. Then the line integral of \mathbf{F} along C is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

Orientation: A given parametrization $x=x(t), y=y(t), a \leq t \leq b$, determines an orientation of a curve C with a positive direction corresponding to increasing values of the parameter t. If $-C$ denotes the curve consisting of the same points as C but with the opposite orientation then we have

- $\int_{-C} f(x, y) d x=-\int_{C} f(x, y) d x$
- $\int_{-C} f(x, y) d y=-\int_{C} f(x, y) d y$
- $\int_{-C} f(x, y) d s=\int_{C} f(x, y) d s$
- $\int_{-C} \mathbf{F} \cdot d \mathbf{r}=-\int_{C} \mathbf{F} \cdot d \mathbf{r}$

EXAMPLE 4: Find the work done by the force field

$$
\mathbf{F}(x, y, z)=-\frac{1}{2} x \mathbf{i}-\frac{1}{2} y \mathbf{j}+\frac{1}{4} \mathbf{k}
$$

on a particle as it moves along the helix given by

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}
$$

from the point $(1,0,0)$ to $(-1,0,3 \pi)$.

