The Immortal Consumer

\[U = \gamma_1 \log(c_1) + \gamma_2 \log(c_2) + \gamma_3 \log(c_3) + \gamma_4 \log(c_4) + \gamma_5 \log(c_5) + \ldots \]

\[U = \log(c_1) + \gamma_2 \log(c_2) + \gamma_3 \log(c_3) + \gamma_4 \log(c_4) + \gamma_5 \log(c_5) + \ldots \]

\[1 > \gamma_1 > 0 \]

Hall Test

\[c_t = \phi c_{t-1} \]
Hall Test

\[c_t = \phi z_t \]

\[c_{t-1} = \phi z_{t-1} \]

\[c_t - c_{t-1} = \phi (z_t - z_{t-1}) \]

Any changes in \(z \) must be unexpected.

Hall Test

\[c_t - c_{t-1} = \phi (z_t - z_{t-1}) \]

\[c_t = c_{t-1} + \phi e_t \]

\[c_t = c_{t-1} + e_t \]

Any changes in \(z \) must be unexpected.

Hall Test

\[c_t - c_{t-1} = \phi (z_t - z_{t-1}) \]

\[c_t - c_{t-1} = \phi e_t \]

\[c_t = c_{t-1} + \phi e_t \]

\[c_t = c_{t-1} + e_t \]

Any changes in \(z \) must be unexpected.

Whose Income?

If the children make more (less) money, the parents should spend more (less).
Whose Income?

If the children make more (less) money, the parents should spend more (less).

If the parents make more (less) money, the children should spend more (less).

Yes!

Suppose the parent gets a raise of $1 and parental spending goes up by 10 times the increase in the child’s spending.

The same ratio should prevail when the child’s income goes up, goes up by 10 times the increase in the child’s spending.

In Fact,
Thoughts

End

©2005 Charles W. Upton. All rights reserved