A Spreadsheet Approach

### Q	P= \(\frac{50}{\%} \)Q	R= PQ	MR	C = 5Q	MC	\(\pi \)
1 | $49.50 | $49.50 | $49.50 | $5 | $5 | $44.50 |
2 | $49.00 | $98.00 | $48.50 | $10 | $5 | $88 |
3 | $48.50 | $145.50 | $47.50 | $15 | $5 | $130.50 |
Which Should I Use?

- Some students are tempted to learn only one of the two techniques.
- That would not be wise.

Problem I

- Suppose

$$Q = 50 - P$$

$$TC = 5Q$$
Problem I

• Suppose

\[Q = 50 - P \]

\[TC = 5Q \]

\[\begin{array}{|c|}
\hline
Q & ? \\
\hline
P & ? \\
\hline
\text{Revenue} & ? \\
\hline
\text{Cost} & ? \\
\hline
\text{Profit} & ? \\
\hline
\end{array} \]

\[\begin{array}{|c|}
\hline
Q & 22.5 \\
\hline
P & 27.5 \\
\hline
\text{Revenue} & 618.75 \\
\hline
\text{Cost} & 112.5 \\
\hline
\text{Profit} & 506.25 \\
\hline
\end{array} \]

Problem II

\[\begin{array}{|c|c|c|}
\hline
\text{Quantity} & \text{Price} & \text{Cost} \\
\hline
0 & & 6 \\
1 & 15 & 11 \\
2 & 13 & 16 \\
3 & 11 & 21 \\
4 & 8 & 26 \\
5 & 7 & 31 \\
6 & 6 & 36 \\
7 & 5 & 41 \\
\hline
\end{array} \]

Problem II

\[\begin{array}{|c|}
\hline
Q & ? \\
\hline
P & ? \\
\hline
\text{Revenue} & ? \\
\hline
\text{Cost} & ? \\
\hline
\text{Profit} & ? \\
\hline
\end{array} \]

\[\begin{array}{|c|}
\hline
Q & 3 \\
\hline
P & 11 \\
\hline
\text{Revenue} & 33 \\
\hline
\text{Cost} & 21 \\
\hline
\text{Profit} & 12 \\
\hline
\end{array} \]
End

©2003 Charles W. Upton