Applying the Monopoly Model

Quantity	45
Price	\$27.50
Revenue	\$1237.50
Cost	\$225
Profit	= Revenue – Cost = \$1227.50 - \$225

KENT STATE

Lectures in Microeconomics-Charles W. Upton

An Application

• Lets do some simple applications, first mathematically and then using a spreadsheet.

KENT STATE

Applying the Monopoly Model

The Demand Functions

$$Q = 100 - 2P$$

KENT STATE

Applying the Monopoly Mode

The Demand Function

$$Q = 100 - 2P$$

$$MC = 5$$

KENT STATE

Applying the Monopoly Mode

Step One

$$Q = 100 - 2P$$

$$MC = 5$$

Find where

$$MR = MC$$

KENT STATE

Applying the Monopoly Model

Finding MR

$$R = PQ$$

KENT STATE

Finding MR

$$R = PQ$$
 $Q = 100 - 2P$
 $P = 50 - (1/2)Q$
 $R = [50-(1/2)Q]Q$

KENT STATE

Applying the Monopoly Model

Finding MR

$$R = PQ$$

$$Q = 100 - 2P$$

$$P = 50 - (1/2)Q$$

$$R = [50 - (1/2)Q]Q$$

$$R = 50Q - (1/2)Q^{2}$$

KENT STATE

Applying the Monopoly Model

An Application

$$MR = \frac{dR}{dQ}$$

KENT STATE

Applying the Monopoly Mode

An Application

$$MR = \frac{dR}{dQ}$$

• We must find the derivative of our equation

$$R = 50Q - (1/2)Q^2$$

KENT STATE

Applying the Monopoly Model

Derivative Review

• The derivative of

$$ax^2 + bx + c$$

KENT STATE

Applying the Monopoly Model

Derivative Review

· The derivative of

$$ax^2 + bx + c$$

is

2ax+b

Derivative Review

· The derivative of

$$ax^{2} + bx + c$$
 $50Q - (1/2)Q^{2}$ is $2ax+b$

KENT STATE

Applying the Monopoly Model

Derivative Review

· The derivative of

$$ax^{2} + bx + c$$
 $50Q - (1/2)Q^{2}$ is $2ax+b$ $50 - Q$

KENT STATE

Applying the Monopoly Model

Set MR = MC

$$MR = 50 - Q$$

KENT STATE

Applying the Monopoly Mode

Set
$$MR = MC$$

$$MR = 50 - Q$$

$$MR = MC$$

$$50-Q = 5$$

$$Q = 45$$

KENT STATE

Applying the Monopoly Mode

Step Two

• What price will the monopolist charge? Remember the inverse demand function

$$P = 50 - (1/2)Q$$

KENT STATE

Applying the Monopoly Model

Finding the Price

• What price will the monopolist charge? Remember the inverse demand function

$$P = 50 - (1/2)Q$$
$$P = 50 - (1/2)(45)$$

KENT STATE

Finding the Price

• What price will the monopolist charge? Remember the inverse demand function

$$P = 50 - (1/2)Q$$

$$P = 50 - (1/2)(45)$$

$$P = 27.5$$

KENT STATE

Applying the Monopoly Model

Finding Price

• Working from the demand function Q = 100 - 2P

KENT STATE

Applying the Monopoly Model

Finding Price

• Working from the demand function

$$Q = 100 - 2P$$

 $45 = 100 - 2P$
 $P = 27.5$

KENT STATE

Applying the Monopoly Mode

Last Steps

Quantity	
Price	
Revenue	
Cost	
Profit	

KENT STATE

Applying the Monopoly Model

We Know

Quantity	45
Price	\$27.50
Revenue	
Cost	
Profit	

KENT STATE

Applying the Monopoly Model

Revenue

Quantity	45
Price	\$27.50
Revenue	= P Q
Cost	
Profit	

KENT STATE

Revenue

Quantity	45
Price	\$27.50
Revenue	= (27.5)(45)
Cost	
Profit	

Revenue

Quantity	45
Price	\$27.50
Revenue	= (27.5)(45)= \$1237.50
Cost	
Profit	
NI SIAIE Appl	ying the Monopoly Model

Total Cost

	Quantity	45
	Price	\$27.50
	Revenue	\$1237.50
	Cost	=5Q=5(45)=
		\$225
	Profit	
KENT	SIALE Appl	ying the Monopoly Model

 π

Quantity	45
Price	\$27.50
Revenue	\$1237.50
Cost	\$225
Profit	= Revenue – Cost = \$1227.50 - \$225

KENT STATE

Applying the Monopoly Mode

π

Quantity	45
Price	\$27.50
Revenue	\$1237.50
Cost	\$225
Profit	\$1012.50

KENT STATE

Applying the Monopoly Model

An Application

• Find the value of Q at which MR = MC

KENT STATE

Review

• Find MC

KENT STATE

Applying the Monopoly Model

Review

- Find MC
- Find MR

KENT STATE

Applying the Monopoly Model

Review

- Find MC
- Find MR
 - The Revenue Function is PQ

KENT STATE

Applying the Monopoly Mode

Review

- Find MC
- Find MR
 - The Revenue Function is PQ
 - Solve for the inverse demand function

KENT STATE

Applying the Monopoly Mode

Review

- Find MC
- Find MR
 - The Revenue Function is PQ
 - Solve for the inverse demand function
 - Substitute for P into the revenue function

KENT STATE

Applying the Monopoly Model

Review

- Find MC
- Find MR
 - The Revenue Function is PQ
 - Solve for the inverse demand function
 - Substitute for P into the revenue function

KENT STATE

An Application

- Find the value
- Find MC
- Find MR
 - Solve for the

 - Substitute i MR = MC function
 - Find the derivative

KENT STATE

Applying the Monopoly Model

A spreadsheet approach

• An alternative means of doing the problem is to build a spreadsheet. Lets work through that approach.

KENT STATE

Applying the Monopoly Model

End

©2003 Charles W. Upton

KENT STATE