Applying the Monopoly Model

An Application

• Let's do some simple applications, first mathematically and then using a spreadsheet.

The Demand Functions

\[Q = 100 - 2P \]

\[MC = 5 \]

Step One

\[Q = 100 - 2P \]

\[MC = 5 \]

• Find where

\[MR = MC \]

Finding MR

\[R = PQ \]
Finding MR

\[R = PQ \]
\[Q = 100 - 2P \]
\[P = 50 - \frac{1}{2}Q \]
\[R = [50 - \frac{1}{2}Q]Q \]

An Application

\[MR = \frac{dR}{dQ} \]

• We must find the derivative of our equation
\[R = 50Q - \frac{1}{2}Q^2 \]

Derivative Review

• The derivative of
\[ax^3 + bx + c \]
is
\[2ax + b \]
Derivative Review

• The derivative of $ax^2 + bx + c$ is $2ax + b$

$50Q - (1/2)Q^2$

Set MR = MC

$MR = 50 - Q$

Step Two

• What price will the monopolist charge?
 Remember the inverse demand function
 $P = 50 - (1/2)Q$

Finding the Price

• What price will the monopolist charge?
 Remember the inverse demand function
 $P = 50 - (1/2)Q$
 $P = 50 - (1/2)(45)$
Finding the Price

• What price will the monopolist charge?
 Remember the inverse demand function
 \[P = 50 - \frac{1}{2}Q \]
 \[P = 50 - \frac{1}{2}(45) \]
 \[P = 27.5 \]

Finding Price

• Working from the demand function
 \[Q = 100 - 2P \]
 \[45 = 100 - 2P \]
 \[P = 27.5 \]

Last Steps

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
<th>Revenue</th>
<th>Cost</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revenue

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[= P \times Q]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We Know

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>$27.50</td>
</tr>
</tbody>
</table>
Applying the Monopoly Model

Revenue

<table>
<thead>
<tr>
<th>Quantity</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$27.50</td>
</tr>
<tr>
<td>Revenue</td>
<td>$(27.5)(45)</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
</tr>
<tr>
<td>Profit</td>
<td></td>
</tr>
</tbody>
</table>

Revenue

<table>
<thead>
<tr>
<th>Quantity</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$27.50</td>
</tr>
<tr>
<td>Revenue</td>
<td>$(27.5)(45) = $1237.50</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
</tr>
<tr>
<td>Profit</td>
<td></td>
</tr>
</tbody>
</table>

Total Cost

<table>
<thead>
<tr>
<th>Quantity</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$27.50</td>
</tr>
<tr>
<td>Revenue</td>
<td>$1237.50</td>
</tr>
<tr>
<td>Cost</td>
<td>$5Q = 5(45) = $225</td>
</tr>
<tr>
<td>Profit</td>
<td></td>
</tr>
</tbody>
</table>

Profit

\[\pi = \text{Revenue} - \text{Cost} = $1227.50 - $225 = $1012.50 \]

An Application

- Find the value of Q at which MR = MC
Review

• Find MC

• Find MC
 • Find MR
 – The Revenue Function is PQ

• Find MC
 • Find MR
 – The Revenue Function is PQ
 – Solve for the inverse demand function
 – Substitute for P into the revenue function
An Application

- Find the value at which MR = MC
- Find the marginal cost (MC)
- Find the marginal revenue (MR)
 - Solve for the inverse demand function
 - Substitute for P into the revenue function
 - Find the derivative

\[
MR = \frac{dR}{dQ}
\]

\[
MC = \frac{dC}{dQ}
\]

A spreadsheet approach

- An alternative means of doing the problem is to build a spreadsheet. Let's work through that approach.

End

©2003 Charles W. Upton