More on the Theory of Choice

- We have talked about indifference curves to represent a consumer’s preferences.
- That is not all of the story. Budget realities play a role.

Marginal Rate of Substitution

\[U = AB \]

- In this example, the following points lie on a single indifference curve:

<table>
<thead>
<tr>
<th>Apples</th>
<th>16</th>
<th>8</th>
<th>5.33</th>
<th>4</th>
<th>3.2</th>
<th>2.67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bananas</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Marginal Rate of Substitution

\[U = AB \]

- In this example, the following points lie on a single indifference curve:

<table>
<thead>
<tr>
<th>Apples</th>
<th>16</th>
<th>8</th>
<th>5.33</th>
<th>4</th>
<th>3.2</th>
<th>2.67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bananas</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Marginal Rate of Substitution

- How many apples is our consumer willing to substitute for an additional banana?

<table>
<thead>
<tr>
<th>Bananas</th>
<th>Apples</th>
<th>MRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>8.00</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2.67</td>
</tr>
<tr>
<td>3</td>
<td>5.33</td>
<td>1.33</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.80</td>
</tr>
<tr>
<td>5</td>
<td>3.2</td>
<td>0.53</td>
</tr>
<tr>
<td>6</td>
<td>2.67</td>
<td></td>
</tr>
</tbody>
</table>

Declining MRS

- MRS is declining. With more bananas, the number of apples you will give up to get another banana declines.

<table>
<thead>
<tr>
<th>Bananas</th>
<th>Apples</th>
<th>MRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>8.00</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2.67</td>
</tr>
<tr>
<td>3</td>
<td>5.33</td>
<td>1.33</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.80</td>
</tr>
<tr>
<td>5</td>
<td>3.2</td>
<td>0.53</td>
</tr>
<tr>
<td>6</td>
<td>2.67</td>
<td></td>
</tr>
</tbody>
</table>

MRS and Indifference Curves

- The Slope of the Indifference Curve gives us the MRS.

- As we move along the indifference curve, the principle of diminishing MRS means a diminishing slope.

The Budget Constraint

- Indifference curves, such as shown on the right, tell us about preferences.
The Budget Constraint

• Indifference curves, such as shown on the right, tell us about preferences.
• There is another part of the story, the budget constraint.

\[p_A A + p_B B = Y \]

\[p_A A + p_B B - p_A A = Y - p_A A \]

Suppose apples sell for \(p_A \); bananas for \(p_B \).
The consumer has income \(Y \).

\[p_A A + p_B B = Y \]

\[p_B B = Y - p_A A \]
The Budget Constraint

- Suppose apples sell for p_A; bananas for p_B
- The consumer has income Y

 \[p_A A + p_B B = Y \]

 \[p_A A + p_B B - p_A = Y - p_A \]

 \[p_B B = Y - p_A \]

 \[\frac{1}{p_B} (p_B B) = \frac{1}{p_B} (Y - p_A) \]

Graphing The Budget Constraint

- If we spend everything on bananas, we can buy $\frac{Y}{p_B}$ bananas.
- If we spend everything on apples, we can buy $\frac{Y}{p_A}$ apples.

\[B = \frac{1}{p_B} Y - \left(\frac{p_A}{p_B} \right) A \]

Constrained Maximization

- In fact, given the budget, 2 is the best we can do.
- This choice maximizes utility subject to the budget constraint.

The Budget Constraint

- At the utility-maximizing point, the budget line is just tangent to the indifference curve.
The Budget Constraint

- At the utility-maximizing point, the budget line is just tangent to the indifference curve.
- It just touches the curve.

MRS and MRT

- The Marginal Rate of Substitution (MRS) is the rate at which we will substitute bananas for apples.
- The Marginal Rate of Transformation (MRT) is the rate at which we can substitute bananas for apples.

Utility maximization requires that

\[MRS = MRT \]
MRS and MRT

• Utility maximization requires that
 \[MRS = MRT \]
• Why? Suppose \(p_a = 50\tau \) and \(p_b = 10\tau \)
 \[MRT = \frac{50\tau}{10\tau} = 5 \]
• Suppose \(MRS = 4 \). That is, I would be willing to take four bananas for one apple.

MRS and MRT

• Suppose \(MRS = 6 \). That is, I would be willing to take six bananas for one apple.

• Another way of putting that is that I would be willing to give up six bananas for one apple'

MRS and MRT

• Utility maximization requires that
 \[MRS = MRT \]
• Why? Suppose \(p_a = 50\tau \) and \(p_b = 10\tau \)
 \[MRT = \frac{50\tau}{10\tau} = 5 \]
• Suppose \(MRS = 4 \). That is, I would be willing to take four bananas for one apple.

• Another way of putting that is that I would be willing to give up six bananas for one apple'
MRS and MRT

- Suppose MRS = 6. That is, I would be willing to take six bananas for one apple.
- Another way of putting that is that I would be willing to give up six bananas to get one apple.

Sell five bananas, get another apple and be better off

©2004 Charles W. Upton