The Problem – Part I

• The industry demand curve for widgets is
 \[Q = 600 - 10P. \]

• Forty plants produce widgets with costs
 \[27 + 3q^2 \]

• Find \(P, Q \) and \(\pi \)

Demand and Supply

• We know industry demand
 \[Q = 600 - 10P \]

• We must find industry supply. The cost function is
 \[27 + 3q^2 \]
We know industry demand:
\[Q = 600 - 10P \]

We must find industry supply. The cost function is:
\[27 + 3q^2 \Rightarrow MC = 6q \]

Each firm produces where MC = P:
\[6q = P \]

Industry supply is then forty times that or:
\[Q = 40P/6 \]

Finding Industry Supply

\[q = \frac{P}{6} \]

• Industry Supply is then forty times that or

\[Q = 40\frac{P}{6} \]

• Equate Demand and Supply

\[D = S = 40\frac{P}{6} \]

Finding Price

\[D = S = 40\frac{P}{6} \]

\[600 - 10P = 40\frac{P}{6} \]

\[3600 - 60P = 40P \]

\[3600 = 100P \]

\[P = 36 \]
Finding Quantity

\[600 - 10P = \frac{40P}{6} \quad Q = 600 - 10P \]
\[3600 - 60P = 40P \quad Q = 600 - 10(36) \]
\[3600 = 100P \quad Q = 600 - 360 \]
\[100P = 3600 \quad Q = 240 \]
\[P = 36 \]

Finding Each Firm’s Output

\[600 - 10P = \frac{40P}{6} \quad Q = 600 - 10P \]
\[3600 - 60P = 40P \quad Q = 600 - 10(36) \]
\[3600 = 100P \quad Q = 600 - 360 \]
\[100P = 3600 \quad Q = 240 \]
\[P = 36 \]
\[q = \frac{Q}{40} \]
\[q = 6 \]

Profits

\[P = 36 \]
\[q = 6 \]

\[\pi = PQ - C \]
Profits
\[P = 36 \]
\[q = 6 \]
\[\pi = PQ - C \]
\[PQ = (36)(6) = 216 \]
\[C = 27 + 3q^2 \]
\[C = 27 + 3(6)^2 \]
\[C = 135 \]

Profits
\[P = 36 \]
\[q = 6 \]
\[\pi = PQ - C \]
\[PQ = (36)(6) = 216 \]
\[C = 27 + 3q^2 \]
\[C = 27 + 3(6)^2 \]
\[C = 135 \]

The Problem – Part II

• Suppose other firms may open a (single) plant. Same cost function.

• Find, P, Q, N, q, and \(\pi \).
Finding Long Run Marginal Cost

- We know that in the long run, the price will be at the minimum of the firm’s AC curve. Let’s find that.

- We know that in the long run, the price will be at the minimum of the firm’s AC curve. Let’s find that.

- The cost function is
 \[C = 27 + 3q^2 \]

 \[AC = \frac{C}{q} \]
Finding Long Run Marginal Cost

- The cost function is
 \[C = 27 + 3q^2 \]
 \[AC = \frac{C}{q} \]
 \[AC = \frac{27 + 3q^2}{q} \]

\[AC = \frac{27}{q} + 3q \]

Finding Long Run Marginal Cost

\[AC = \frac{27}{q} + 3q \]

\[MC = AC \]

\[C = 27 + 3q^2 \]

\[MC = 6q \]

\[6q = \frac{27}{q} + 3q \]

\[3q = \frac{27}{q} \]
Finding Long Run Marginal Cost

\[6q = \frac{27}{q} + 3q \]

\[3q^2 = 27 \]

\[3q = \frac{27}{q} \]

Finding Long Run Marginal Cost

\[q^2 = 9 + 3q \]

\[3q^2 = 27 \]

\[q = 3 \]

Finding Long Run Marginal Cost

AC when \(q = 3 \)

\[AC = \frac{27}{q} + 3q \]

\[AC = \frac{27}{3} + 3(3) = 18 \]

Finding Long Run Marginal Cost

\(q = 3 \)

\[AC = 18 \]

\[P = 18 \]

Total Output
Total Output

$AC = 18$

$P = 18$

\[Q = 600 - 10P \]

Total Output

$AC = 18$

$P = 18$

\[Q = 600 - 10P \]

\[Q = 600 - 10(18) = 600 - 180 = 420 \]

Total Output

$AC = 18$

$P = 18$

\[Q = 420 \]

\[q = 3 \]

Total Output

$AC = 18$

$P = 18$

\[Q = 420 \]

\[q = 3 \]

\[N = 140 \]

End