The Monopolist’s Demand Curve

• Want to develop some key propositions about the demand curve

Many of these center on elasticities

Marginal Revenue and Elasticity

• Recall our definition of point elasticity

\[\eta = \text{Slope} \frac{P}{Q} \]

• In the case of a linear demand function

\[Q = a - bP \]
Marginal Revenue and Elasticity

- Recall our definition of point elasticity
 \[\eta = \text{Slope} \frac{P}{Q} \]
 \(\text{Slope} = -b \)

- In the case of a linear demand function
 \[Q = a - bP \]

Marginal Revenue and Elasticity

- A more general definition
 \[\eta = \frac{dQ}{dP} \left(\frac{P}{Q} \right) \]

Restating the Elasticity

\[\eta = \frac{dQ}{dP} \left(\frac{P}{Q} \right) \]

\[\frac{1}{\eta} = \left(\frac{1}{\frac{dQ}{dP}} \right) \left(\frac{Q}{P} \right) \]

Restating the Elasticity

\[\frac{1}{\eta} = \left(\frac{1}{\frac{dQ}{dP}} \right) \left(\frac{Q}{P} \right) \]

\[P \frac{1}{\eta} = \left(\frac{dP}{dQ} \right) \left(\frac{Q}{P} \right)^P \]

\[P \frac{1}{\eta} = \left(\frac{dP}{dQ} \right) Q \]
Marginal Revenue and Elasticity

• The Monopolist cares about MR.
• There is a relation between MR and elasticity.

\[R = PQ \]

\[\frac{dR}{dQ} = \frac{dP}{dQ} Q + P \]
Marginal Revenue and Elasticity

\[
\frac{dP}{dQ} = MR - P
\]

\[
MR = \frac{dP}{dQ} + P
\]

\[
MR = P \left(\frac{1}{\eta} + 1 \right) = P \left(1 + \frac{1}{\eta} \right)
\]

First Elasticity Relation

\[
MR = P \left(1 + \frac{1}{\eta} \right)
\]

Second Elasticity Relation

\[
MR = P \left(1 + \frac{1}{\eta} \right)
\]

Second Elasticity Relation

\[
MR = P \left(1 + \frac{1}{\eta} \right)
\]

Second Elasticity Relation

\[
MC = P \left(1 + \frac{1}{\eta} \right)
\]

Second Elasticity Relation

\[
P \left(1 + \frac{1}{\eta} \right) = MC
\]
Second Elasticity Relation

\[P = \left(\frac{MC}{1 + \frac{1}{\eta}} \right) \]

Third Elasticity Relation

\[P(1 + \frac{1}{\eta}) = MC \]

Third Elasticity Relation

\[P + P \left(\frac{1}{\eta} \right) = MC \]

Third Elasticity Relation

\[P - MC = -P \left(\frac{1}{\eta} \right) \]

Third Elasticity Relation

\[\frac{P - MC}{P} = -\frac{1}{\eta} \]
A Summary

\[MR = P \left(1 + \frac{1}{\eta} \right) \]

\[\frac{P - MC}{P} = -\frac{1}{\eta} \]

\[P = \left(\frac{MC}{1 + \frac{1}{\eta}} \right) \]