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Abstract

All industrialized countries have experienced a transition from high birth rates and

stagnant standards of living to low birth rates and sustained growth in per capita income.

What factors contributed to this transition and to what extent? Were output and popu-

lation dynamics driven by common or separate forces? We develop a general equilibrium

model with endogenous fertility in order to quantitatively assess the impact of changes in

young-age mortality and technological progress on the demographic transition and indus-

trialization in England. We find that the decline in young-age mortality accounts for 60%

of the fall in the General Fertility Rate that occurred in England between 1700 and 1950.

Over the same period, changes in productivity account for 76% of the increase in GDP per

capita and nearly all of the decline of land share in total income. Furthermore, we find

that changes in productivity are quantitatively insignificant in accounting for the observed

patterns in fertility behavior, while mortality changes are quantitatively relevant only to

population dynamics, not to the other quantities predicted by the model.
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1 Introduction

The ideas of Thomas Malthus published in 1798 [25] appear to be consistent with most of human

history. Malthus expressed a rather dim outlook for the evolution of population and output. In

the absence of sustained technological progress, Malthus claimed that standards of living would

always remain constant. According to his theory, any one time technological improvement would

translate into temporarily higher population growth until the standards of living returned to

their original level. Cross-country differences in the state of technology would simply translate

into variation in population size, not into a disparity in per capita incomes. The main driving

forces of Malthusian theory are land-labor technology with diminishing returns to labor due to

a fixed supply of land and the assumption that population growth increases with per capita

consumption.

Fortunately, all industrialized countries experienced a transition from stagnant standards

of living to sustained growth in per capita income, thus escaping the Malthusian trap. This

transition coincided with the demographic transition from high birth and mortality rates to low

birth and mortality rates. Notably, in most countries, there was a lag between the drop in

death rates and the drop in birth rates, which resulted in a hump in the population growth

rate. Furthermore, resources reallocated from rural production to non-rural production, and the

importance of land income share in the total production significantly declined over the same

period of time. These key observations motivated this paper.

Why did these events take place? What are the main forces that drove this transition?

Is there a common explanation for economic and demographic changes, or were output and

population driven by separate forces? These questions are of pressing importance, especially in

the view of current economic conditions in many sub-Saharan African countries that have not yet

undergone the demographic transition. These countries’ staggering poverty necessitates effective

policy recommendations.

In order to answer the questions posed above, we develop a general equilibrium model with

endogenous fertility capable of generating the transition from Malthusian stagnation to modern

growth. Within the framework of our model, which is calibrated to match some key moments at

the beginning of 17th century England, we quantitatively assess the importance of two factors

in shaping the demographic transition and industrialization in England: changes in young-age

mortality and technological progress. More precisely, we examine the model dynamics that

result when changes in young-age mortality and total factor productivity (TFP) vary over time

in accordance with historical data.

This paper contributes to the recent trend in growth literature that attempts to explain eco-

nomic development over long time scales. In a recent work, Lucas [25] emphasizes the importance
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of this line of research: ”... I think it is accurate to say that we have not one but two theories of

production: one consistent with the main features of the world economy prior to the industrial

revolution [Malthusian theory] and another roughly consistent with the behavior of the advanced

economies today [Solow growth theory]. What we need is an understanding of the transition.”

The mechanism that we use is a dynamic general equliubrium model with endogenous fertility.

It has two important components. First, production is modeled as in Hansen and Prescott [21].

The final good can be produced using two different technologies, the Malthusian, which uses

capital, labor, and land as inputs, and, the Solow, which employs capital and labor only. Since

land is a fixed factor, it essentially introduces decreasing returns to scale to capital and labor

in the Malthusian technology. We associate the Malthusian technology with rural production

that took place on small individual farms. In contrast, the Solow technology is associated with

urban production. This choice of modeling production allows us to investigate the implications

of changes in young-age mortality and TFP for resource allocation between the two technologies.

The second important part of our mechanism is endogenous fertility. As in Barro and Becker

[3], we assume that parents place value on both the number of surviving children and their

childrens’ wellbeing. Thus, there is a quantity-quality trade-off explicit in our model. Parents

face a trade-off between having many children with small inheritance in the form of capital and

land for each child and having a few children but endowing each with a larger piece of land and

more capital.

How do changes in young-age mortality and TFP propagate in our model? There are two

channels through which changes in young-age mortality affect the choices made by households.

On one hand, with a higher number of children surviving to adulthood, fewer births are needed

to achieve the desired number of surviving children. On the other hand, as the probability of

survival increases, the cost of raising a surviving child declines, and hence, induces higher birth

numbers. This method of modeling the time cost of raising children follows Boldrin and Jones

[6], as well as Doepke [11]. In short, an increase in the probability of survival always leads to

a reduction in birth rates and a temporary increase in the number of surviving children. Also,

depending on parameter specification, an increase in the probability of survival may or may not

lead to a permanent increase in the number of surviving children.

Similarly, changes in TFP affect the return on children. On one hand, children are normal

goods, and hence, higher income induces higher fertility. On the other hand, as TFP goes up,

wages go up. Consequently, the opportunity cost of raising children measured in terms of foregone

parents’ wages increases. This has a dampening effect on fertility.

We find that the decline in young-age mortality accounts for 60% of the fall in the General

Fertility Rate1 that occurred in England between 1700 and 1950. Over the same period, changes

1General Fertility Rate is the number of live births per 1,000 women ages 15-44 or 15-49 years in a given year.

3



in productivity account for 76% of the increase in GDP per capita and for nearly all of the decline

of land share in total income. Interestingly, both experiments generate a transition from Malthus

to Solow. However, changes in TFP do so in a manner consistent with empirical observations,

driving the share of the Malthusian technology to nearly zero in the period from 1600 to 2000.

Changes in the probability of survival lead to a much slower transition, predicting that even in

2400, the output produced by the Malthusian technology would comprise 10% of total output.

We also find that changes in total factor productivities alone can account for long term trends

in the observed patterns of factor income shares. This is due to resource reallocation between

sectors with different but constant factor intensities.

One of the questions raised was whether the forces driving the economic and demographic

changes could be separated out. Our quantitative results suggest that the explanation for changes

in output and population need not be entirely common. In fact, we find that changes in produc-

tivity are quantitatively insignificant in accounting for the observed patterns in fertility behavior,

while mortality changes are quantitatively relevant only to population dynamics, and not to the

other quantities predicted by the model. Certainly, this does not preclude the existence of some

other force left out of consideration in this paper that could be a significant factor in driving

both output and population dynamics.

The most important contribution of our work is the quantitative analysis of young-age mor-

tality and changes in TFP within a framework that is capable of generating a transition from

Malthusian stagnation to modern growth. We carry out careful analysis of historical data for

England and Wales. We work with mortality and fertility data provided by Wrigley, Davies,

Oeppen, and Schofield [31], Mitchell [28], and the Human Mortality Database [22]. The survival

probabilities used in the model represent their actual historical estimates. In fact, these proba-

bilities do not change monotonically, as the reader may conjecture. Similarly, we estimate TFPs

in the rural and urban sectors using the dual-approach. This approach requires time series data

on wages in the two sectors, land and capital rental rates, and the GDP deflator. These time

series were either taken directly or inferred from three of Gregory Clark’s papers [10], [8], [9].

Another important contribution is our analysis of transitional dynamics from one balanced

growth path towards another, triggered by the observed changes in mortality rates and/or relative

TFP growth rates. In many of the earlier works, the prevalent analysis of the exogenous changes

was performed by comparing steady states. This was done because of the difficulties associated

with solving for equilibrium paths in this type of non-stationary environment. Although we fully

appreciate the importance of comparative statics analysis, we also find that a great deal of insight

can be lost by leaving the transition path out of consideration. Indeed, we find that convergence

in the benchmark model is quite slow.

The rest of this paper is organized as follows. Section 2 reviews the English case data and
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illucidates the up to date accomplishments in related literature. In Section 3 we set up the

environment and present the model. In Section 4 the equilibrium is discussed, and different

types of balanced growth paths are analyzed. In Section 5 we discuss the calibration of our

model and the estimation of the TFP time series. In Section 6 we describe and analyze the

quantitative results of the two main experiments. Finally, we conclude in Section 7.

2 Data and Literature Review

Some facts about England and Wales.

We choose to focus on the case of England and Wales due to data limitations for other

countries. Next, we examine some fundamentally important facts that motivated this paper.

We will return to the data discussion in section 4. Extensive reviews of the English case are

given in Boldrin and Jones [6] and Fernandez-Villaverde [19]. Galor and Weil [14] and Hansen

and Prescott [21] provide detailed accounts of the regime switches experienced by developed

countries. Galor [13] also reviews historical data on output and demographic changes and makes

a strong case in favor of developing unified growth theory that can account for the process of

development over long time scales.
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Figure 1 depicts the evolution of the index of the real GDP per capita for England and Wales.

The data sources are Clark [9] for the period from 1560 to 1860 and Maddison [26] from 1820 to
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1992. Observe that the per capita real GDP is roughly stagnant for centuries, until it takes off

in the beginning of the 19th century.
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The demographic transition in England and Wales is depicted in Figure 2. This figure plots

Crude Birth Rates2 and Crude Death Rates3 provided by Wrigley, Davies, Oeppen, and Schofield

[31] for the time period up to 1871 and continued using Mitchell’s [28] data. Before 1750, England

experienced high fertility and high mortality rates. The average population growth in the first

half of the 18th century was around 0.4% per year. In the second half of the 18th century,

mortality began to decline, and this was accompanied by rising (or at least persisting high)

fertility rates. In the second half of the 19th century, birth rates began to fall, while mortality

continued to decline. Eventually, both stabilized at a new low level in the first half of the 20th

century.

Note that the lag between the drop in death rates and the drop in birth rates implies a hump

in the population growth rate. A number of studies attempt to generate the drop in population

growth rates. It is, however, useful to notice that the drop in the population growth is just the

later part of the hump, and the rise in population growth rate deserves just as much attention.

Also, observe that the drop in fertility rates was so rapid that it indicates the importance of

economic forces in governing the demographic transition, in contrast to usually slowly evolving

cultural changes. It is also interesting that fertility remained high for about 80 years after the

beginning of sharp growth in the real per capita GDP.

2Crude Birth Rate is the number of births in a given year per 1000 people.
3Crude Death Rate is the number of deaths in a given year per 1000 people.
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Figure 3 depicts Crude Birth Rates together with the probability of survival to the age of

twenty five. The latter time series we calculate based on age-specific mortality rates available

fromWrigley, Davies, Oeppen, and Schofield [31] and the Human Mortality Database [22]. Notice

that the timing of a sharp increase in the probability of survival conicides with the drop in birth

rates. Since this observation is not unique to the case of England, changes in young-age mortality

are often cited as the primary driving force behind the demographic transition.
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It is also significant that this period is associated with the trend of people moving out of

the rural sector and into the industrial capital-intensive sector. As depicted in Figures 4 and 5,

the share of the urban GDP in the total GDP rose from around 30% in the 1550s to roughly

98% in the 1990s. Similarly, the share of employment in non-rural production dramatically

increased from around 40% to 98% over the same period. The data on industrialization and

urbanization up to 1860 are taken from Clark’s papers [9] and [8]; the time series are continued

using Maddison’s [26] data.
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Figure 5

Related Literature

At this point, it is instructive to review related literature and to elucidate the accomplishments

made to this time with respect to the objectives stated above.

Most of the literature in this field is theoretical. Examples include the pioneering works of

the dynamic formulation of the dynastic model of fertility choice carried out by Ben-Zion and
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Razin [29] and Barro and Becker [3], [4]. In both models, parents are altruistic toward their

children and decide on the number of children as well as the amount of bequests. In Ben-Zion

and Razin model, an increase in the productivity of capital tends to cause a decrease in the

population growth. Barro and Becker use a model similar to that of Ben-Zion and Razin, but it

also assumes exogenous labor augmenting technological progress. Their model is more standard

and is comparable with the National Income and Product Accounting.

There are two main experiments performed in quantitative studies employing the Barro-

Becker model in an attempt to match the observed data on the demographic transition. The

first is based on the belief that the increase in income that accompanied the industrial revolution

started the demographic transition. Fernandez-Villaverde [19] finds that increasing productivity

in a version of the Barro-Becker model leads to a rise in both fertility and the net reproduction

rate. The second experiment reported in the literature is based on the observation that infant

mortality rates fell during the demographic transition. For example, Doepke [11] finds that in

several versions of the Barro-Becker model, as infant mortality declines, the total fertility rate

falls, but the number of surviving children increases. He concludes that “factors other than

declining infant and child mortality are responsible for the large decline in net reproduction rate

observed in industrialized countries over the last century”.

Another example of a purely theoretical model aimed at investigating the historical evolu-

tion of output and population are Galor and Weil [14]. Galor and Weil argue that technolog-

ical progress is skill-biased. Hence, parents respond to technological progress by having fewer,

higher quality children. The growing stock of human capital feeds back into higher technological

progress, thus reenforcing this mechanism.

Becker, Murphy, Tamura [5] and Hansen and Prescott [21] represent valuable steps in the di-

rection of understanding the transition. Becker, Murphy, and Tamura [5] emphasize the quantity-

quality trade-off. The main driving force in their model is the assumption that the return on

human capital is increasing in the stock of human capital. Their model has two possible stable

equilibria, one characterized by high fertility, low income, and low stock of human capital, and

one described by low fertility, high income, and high stock of human capital. The authors do

not attempt to model the transition between these equilibria. Instead, they conclude that ”luck”

must play an important role in triggering the shift between them.

Hansen and Prescott [21] suggest a different mechanism that might have triggered the demo-

graphic transition. They propose a model with two technologies identical to those we choose,

one Malthusian technology, which requires land, labor, and capital as inputs, and one Solow

technology, which requires labor and capital as inputs. The transition from Malthus to Solow

is an equilibrium property of their model brought about by technological progress in the Solow

technology. As in the Malthusian model, population growth is postulated to be a function of per
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capita consumption. Hansen and Prescott calibrate the parameters of this function in order to

match the demographic transition in Europe. They obtain a non-monotonic function: for low lev-

els of per capita income, income and population growth are positively correlated and for income

levels above a certain threshold, this correlation becomes nevative. Hansen and Prescott’s work

suggests that explanations based on technological progress are promising. However, it provides

no economic insight for why the relationship between population growth and the level of per

capita consumption is non-monotonic. Our work is most closely related to Hansen and Prescott

[21], as we use the same technological assumptions. However, unlike Hansen and Prescott, we

explicitly model fertility choice.

Greenwood and Seshadri [17] use a two sector model with endogenous fertility to study the

U.S. demographic transition. They find that changes in TFP alone can account for both the

decline in fertility rates and the increase in GDP per capita that occurred in the U.S. Their

results stand in contrast to ours. We find that the effect of changes in TFP are insignificant in

accounting for fertility patterns in England.

Alternatives to quantity-quality trade-off stories have also been developed in the literature.

One alternative is based on the idea that children provide old-age security for parents. This

theory reverses the direction of altruism, as children are now the ones who care about their

parents. In these models, parents have children because they expect to be cared for when they

become old. Excellent references are Boldrin and Jones [6] and Ehrlich-Lui [18].

Boldrin and Jones perform an experiment to elucidate the implication of the decline in infant

and child mortality and conclude, similarly to Doepke [11], that it leads to a decline in birth

rates but not in the number of surviving births. Population growth can potentially be reduced

in an extended version of the Boldrin-Jones model that would study equilibria in which children

do not cooperate. Boldrin, DeNardi, and Jones [7] find that the increase in the size of the

Social Security system leads to changes in fertility behavior that are consistent with empirical

evidence whenever the Boldrin-Jones framework is used. By contrast, when they use the Barro-

Becker dynastic framework, they find the effect of changes in the Social Security system to be

quantitatively unimportant.

Two more excellent quantitative investigations are Doepke [12] and Fernandez-Villaverde

[19]. Utilizing data on the timing and duration of demographic changes that took place in

Brazil and Korea, Doepke concludes that government policies that impact the opportunity cost

of education, such as education subsidies and child-labor laws, have a direct effect on the speed

of the demographic transition. His mechanism is also based on a quantity-quality trade-off.

Fernandez-Villaverde explores the fall of relative capital prices and finds it to be quantitatively

important in accounting for the observed patterns of fertility and per capita income.
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3 Model

This is a one sector overlapping generations model with two technologies, exogenous technological

progress, and endogenous fertility.

Technology, firms

Firms are endowed with one of two possible technologies that can produce the same good as

in Hansen, Prescott [21]. We subscript the Malthusian technology that requires capital, labor,

and land as inputs by 1, and the Solow technology that employs capital and labor only by 2. The

first technology is associated with production taking place in the rural sector, while the second

technology with production taking place in the cities. Both technologies exhibit constant returns

to scale, which allows us to assume that there are two aggregate competitive firms, one using the

Malthusian technology, and another using the Solow technology. The outputs of these two firms

are given by

Y1t = A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t ,

Y2t = A2tK
θ
2tL

1−θ
2t ,

where Kj, Lj denote capital and labor employed by technology j ∈ {1, 2} and Λt denotes land

employed by the Malthusian technology.

We assume exogenous technological progress in both technologies, that is,

A1t = A10

tY
τ=0

γ1τ and A2t = A20

tY
τ=0

γ2τ ,

where γiτ represents the time τ exogenous growth rate of technology i TFP.

Formally, the profit maximization problems of Firms 1 and 2 are given by

max
K1t,L1t,Λt

A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t − wtL1t − rtK1t − ρtΛt,

max
K2t,L2t

A2tK
θ
2tL

1−θ
2t − wtL2t − rtK2t,

where wt, rt, and ρt denote time t wage, capital rental rate, and land rental rate respectively.

Preferences, households, dynasties

There is measure 1 of identical dynasties. Two people belong to the same dynasty if they

have a common predecessor. We denote the number of households belonging to dynasty j and

alive at time t by Nt (j). Then the total number of households in the economy alive at time t is

given by Nt =
R
[0,1]

Nt (j) dj, where j is a uniform measure on [0, 1] indexing the dynasties.

Households live for two periods, childhood and adulthood. An adult household belonging to
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dynasty j and alive at time t derives utility from its own consumption ct (j), the number of its

surviving children nt (j) (young households), and its children’s average utility. The general form

of households’ preferences is given by

Ut (j) = u (ct (j) , nt (j)) + βUt+1 (j) .

It should be noted that for this utility choice, altruism per child is implicitly set to 1
nt
, which

is the Barro and Becker [4] altruism with ε = 14.

A fraction πt of children born, ft, survives to adulthood. We denote the number of surviving

descendants by

nt (j) = πtft (j) . (3.1)

There is a time cost associated with raising children. A household spends fraction a of its time per

each born child and an additional fraction b of its time per each child who survives to adulthood.

We assume that for each newborn child, households pay the expected cost of raising him with

certainty. Thus, the total time cost of raising ft (j) newborn children is given by

[(1− πt) a+ πt (a+ b)] ft (j) =

µ
a

πt
+ b

¶
nt (j) ,

where we used (3.1) to factor out the number of surviving children. Hence, a
πt
+ b represents the

time cost of raising a surviving child. Denote this cost by qt, that is,

qt =
a

πt
+ b. (3.2)

Observe that the time cost of raising surviving children is a decreasing function of the survival

probability. The intuition is that the higher the survival probability is, the cheaper it is to create

a surviving child5.

An adult household belonging to dynasty j rents its land holding λt (j) and inelastically

devotes the time not spent raising children to work. He chooses its own consumption ct (j), the

number of his surviving children nt (j), and the amount of bequests kt+1 (j) to be passed on to

each surviving child in the form of capital. Each household’s land holdings are equally shared

among its descendants upon the death of the household.

4Barro and Becker (1989) assume Ut = u(ct) + βn1−εt Ut+1 to ensure that for given utility per child Ut+1
parental utility is increasing and concave in the number of children.

5If we modeled the cost of raising children to be paid in terms of final good, the results would not change.
In that case, for the existence of a balanced growth path along which per capita variables grow at some positive
rate, we would need to assume that goods cost grows in proportion to income over time.
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Formally, a household belonging to dynasty j solves

max
ct(j),kt+1(j),nt(j)≥0

Ut (j) = u(ct(j), nt(j)) + βUt+1 (j)

s.t.

ct (j) + kt+1 (j)nt (j) = (1− qtnt (j))wt + (rt + 1− δ) kt (j) + ρtλt (j) ,

λt+1 (j) =
λt (j)

nt (j)
.

The household takes sequences of wages, interest rates, capital rental rates, and land rental rates

as given and takes into account the effect that his choices today have on the average utility of

his descendants, Ut+1 (j). The trade-offs this household is facing are clear from the setup of his

maximization problem. Parents face the quantity-quality trade-off between having many children

with small inheritance in the form of capital and land for each child and having a few children

but endowing each with a larger piece of land and more capital.

Population dynamics

The number of households of dynasty j evolves according to

Nt+1 (j) =

Z
[0,Nt(j)]

nt (i, j) di, (3.3)

where i is a uniform measure on [0, Nt (j)] indexing households of dynasty j. Hence, the total

number of households alive evolves according to

Nt+1 =

Z
[0,1]

Nt+1 (j) dj =

Z
[0,1]

µZ
[0,Nt(j)]

nt (i, j) di

¶
dj. (3.4)

We assume that all dynasties have identical initial conditions, that is, the same initial size

N0 (j) = N0 ∀j, the same endowment of capital per household k0 (j) = k0 = K0/N0 ∀j, and the
same endowment of land λ0 (j) = λ0 = Λ/N0 ∀j. We only consider symmetric equilibria, that
is, equilibria with the property that all households in the model economy behave identically. In

particular, nt (i, j) = nt ∀i, j. Under this assumption, (3.3) becomes

Nt+1 (j) = ntNt (j) ,

and since initially all dynasties are identical, it follows that Nt (j) = Nt ∀j and the total number
of households in the economy is given byZ

[0,1]

Ntdj = Nt.
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The total number of children per household in the economy isZ
[0,1]

ntdj = nt.

Clearly, (3.4) becomes

Nt+1 = ntNt.

Market Clearing

In the equilibria considered in this paper, all decisions are symmetric across households, i.e.,

ct (j) = ct, kt (j) = kt ∀j, and hence, the aggregates for the economy are given by

Ct =

Z
[0,1]

ctNtdj = ctNt = ctNt,

Kt =

Z
[0,1]

ktNtdj = ktNt = ktNt,

Λ =

Z
[0,1]

Z
[0,Nt(j)]

λt (i, j) didj = λtNt.

The feasibility constraint and market clearing conditions in the capital, labor, and land

markets are as follows:

Ct +Kt+1 = A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t +A2tK

θ
2tL

1−θ
2t + (1− δ)Kt, (3.5)

K1t +K2t = Kt, (3.6)

L1t + L2t = (1− qtnt)Nt, (3.7)

Λt = Λ. (3.8)

4 Equilibrium

Definition 1 A symmetric competitive equilibrium for a given parameterization and for given

(k0, N0) consists of allocations {ct, nt, λt, kt+1, k1t, k2t, l1t, l2t, Nt+1}∞t=0 and prices {ωt, rt, ρt}∞t=0
such that households and firms solve their maximization problems, and all markets clear.

Consider the following Social Planning problem.
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(SP )

max
{Ct,Nt+1,Kt+1}t≥0

∞X
t=0

βtu

µ
Ct

Nt
,
Nt+1

Nt

¶
s.t.

Ct +Kt+1 = F (Kt, Lt; t) + (1− δ)Kt

F (Kt, Lt; t) ≡ max
K1t,L1t

h
A1tK

φ
1tL

µ
1tΛ

1−φ−µ +A2t (Kt −K1t)
θ (Lt − L1t)

1−θ
i

Lt = Nt − qtNt+1

Nonnegativity, K0, N0 given

There are difficulties associated with defining efficiency in models with endogenous fertility.

The Social Planning problem defined above corresponds to the A-efficiency concept as defined
by Golosov, Jones, Tertilt [16]. According to this concept, when comparisons are made across

allocations, the positive weight is put only on those households that are alive in all possible

allocations. Analyzing concepts of efficiency in models of endogenous fertility is beyond the

scope of this paper. We define this Social Planning problem in order to make our computations

easier.

Proposition 2 The competitive equilibrium in the decentralized economy corresponds to the so-

lution of the Social Planning problem.

Proof. See Appendix A.

We follow Lucas [25] and choose

u (ct, nt) = α log ct + (1− α) lognt,

so the Barro and Becker assumption that for given utility per child Ut+1 parental utility Ut =

α log ct+(1− α) log nt+βUt+1 is increasing and concave in the number of children is maintained
6.

This functional form choice has no bearing on the qualitative results of our model.

Proposition 3 Under the assumption that u (ct, nt) = α log ct+(1− α) lognt, the objective func-

tion in the Social Planning problem can be replaced by
P∞

t=0 β
t (α logCt + (1− α− β) logNt+1)

Proof. See Appendix B.

Notice that continuity of the objective function together with compactness and non-emptiness

of the contraint set guarantees existence of the solution. Notice that 1− α− β > 0 guarantees

6Barro and Becker use Ut = cσt + βn1−εt Ut+1
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that the objective function is strictly concave. Since the constraint set is convex, this gives

uniqueness of the solution.

From the Social Planner’s perspective, both capital and children are investment goods. By

choosing more children today, Nt+1, production can be increased tomorrow although at the ex-

pense of decreasing production today due to time costs of raising children. Another interesting

trade-off clear from the set-up of the Social Planning problem is the trade-off between consump-

tion and children today. Indeed, both Ct and Nt+1 enter the objective function in the Social

Planning problem. Hence, children are both consumption and investment goods.

It is instructive to review the intuition that can be obtained from the first order conditions

derived for the Social Planning problem.

Ct+1

Ct
= β (rt+1 + 1− δ) , (4.1)

(1− α− β)Ct

αNt+1
= qtwt − wt+1

rt+1 + 1− δ
, (4.2)

Ct +Kt+1 = F (Kt, Nt − qtNt+1; t) + (1− δ)Kt, (4.3)

where wt denotes the marginal product of labor, i.e., wt = F2 (Kt, Nt − qtNt+1; t) . The first equa-

tion, (4.1), is a standard Euler equation that describes the intertemporal trade-off in aggregate

consumption. The second, (4.2), is the intratemporal trade-off between consumption and chil-

dren since Nt+1 denotes the number of adults in t + 1 or equivalently, the number of children

today. It says that the marginal rate of substitution between children and consumption is given

by their relative price. The price of a child in terms of final goods is measured by the opportunity

cost today, that is, the forgone output resulting from having to spend time to raise this child

less the present value of the child’s earnings in t+ 1. The last equation, (4.3), is the feasibility

condition.

Proposition 4 The Malthusian technology operates for all t as long as Kt, Lt > 0.

Proof. Suppose on the contrary that there is time t such that Y1t = 0. Since resources are

allocated efficiently, this means that K1t = L1t = 0 and

max
Kt,L1t

h
A1tK

φ
1tL

µ
1tΛ

1−φ−µ +A2t (Kt −K1t)
θ (Lt − L1t)

1−θ
i
= A2tK

θ
t L

1−θ
t . (4.4)

Consider reallocating (εKt, εLt) to the Malthusian technology, where ε ∈ (0, 1). We next show
that for ε small enough, we have

A1t (εKt)
φ (εLt)

µΛ1−φ−µ +A2t ((1− ε)Kt)
θ ((1− ε)Lt)

1−θ > A2tK
θ
t L

1−θ
t . (4.5)
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Simplifying this inequality gives 1
ε1−φ−µ >

A2tKθ
t L

1−θ
t

A1tK
φ
t L

µ
t Λ

1−φ−µ . Since limε→0 1
ε1−φ−µ = ∞ and the

right hand side is a finite number, ∃ε > 0 that ensures (4.5) is satisfied. Hence, we arrive at

contradiction with (4.4).

Less formally, due to decreasing returns to scale in capital and labor, the marginal products

of inputs in the Malthusian technology become very large when its capital and labor inputs

converge to zero as long as all land is employed. This guarantees that the Malthusian technology

is always used in production.

It is possible that for A2 small enough relative to A1, the Solow technology will not operate.

It is also possible that both technologies always operate side by side. Finally, it is possible that

the Solow technology does not operate for a while and begins operating whenever its total factor

productivity is large enough.

Balanced Growth

In the light of the above discussion, we distinguish between three types of possible balanced

growth in our model. These types are characterized by whether or not the Solow technology

operates and whether or not the fraction of Malthusian output in total output converges to 0

(Y1/Y → 0). More precisely, the first type is associated with both technologies operating and

Y2/Y remaining constant. The second type is associated with only Malthusian technology in

operation. Finally, the third type is associated with both technologies operating but Malthusian

output as a fraction of total output converging to zero.

We can split the parameter space into 4 subspaces, 3 of which imply the convergence of

equilibrium time paths to one of the aforementioned types of balanced growth, and the 4th

implying lack of balanced growth. Next we discuss all three types of possible balanced growth

in more detail.

(i) It is possible that both technologies operate on a balanced growth path. If we start off

with the right values of N0 and K0 such that we are on this type of balanced growth, then all per

capita variables would grow at some constant growth rates, not necessarily the same, and the

fraction of Solow output in total output would be fixed. Likewise, the fraction of Solow labor in

total labor as well as the fraction of Solow capital in total capital would forever remain at some

constant level. On this balanced growth path, both population growth and per capita output

growth are determined by the TFP growth rates in the two sectors7:

γ = γ
1

1−θ
2 , n =

µ
γ1γ

− 1−φ
1−θ

2

¶ 1
1−φ−µ

. (4.6)

The growth rate of per capita output increases in the Solow TFP and is independent of the

7This condition comes from constancy of the interest rate on any balanced growth path (see the Euler equation)
and equality of the marginal products of capital in the two sectors.
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Malthusian TFP. Population growth increases in the Malthusian TFP and decreases in the Solow

TFP. Interestingly, the time cost of raising children does not enter these two equations. This

means that increases in probability of survival would directly translate into proportional reduc-

tion of fertility (n = πf). For this class of simulations, we found that during the transition from

the original to the new balanced growth path, population growth exhibits a hump. Therefore, it

is misleading to conclude from these comparative statics exercises that mortality changes do not

affect population growth.

It is also important to notice that this analysis is only valid if the new value of survival

probability does not preclude existence of this type of balanced growth path. In fact, this is

what happens in the simulation results of the benchmark economy that are presented below.

Both of the exogenous changes (one is changes in γ1 and γ2 and another is changes in π) that are

fed into the model imply that the economy converges to the second type of balanced growth. In

other words, these exogenous experiments are essentially changes in model’s parameterization.

Thus, if the endpoint parameterization switches from one subspace described above to another,

then the type of balanced growth path to which the equilibrium path converges changes as well.

(ii) It is possible that the Solow technology does not operate on a balanced growth path.

(iiI) Finally, it is possible that the Malthusian output converges to 0 as a fraction of total

output. Notice that this does not mean that the Malthusian output itself converges to 0. This

type of balanced growth is called asymptotic.

For the second and third type, there is no analytical solution for γ and n, such as in 4.6.

The systems of equations determining γ and n are given in Appendix C. The comparative statics

results show that in both of these two types of balanced growth, increases in TFP growth lead to

a decline in the population growth and an increase in per capita output growth. For the Malthus

only balanced growth path, increases in probability of survival lead to exactly the opposite

effect. In contrast, for the third type of balanced growth, increases in survival probabilities

lead to increases in population growth but do not affect the growth rate of per capita output,

γ = γ
1

1−θ
2 .

This discussion contrasts the result obtained by Hansen Prescott [21]. In Hansen and Prescott,

as long as the growth rate of Malthusian total factor productivity is positive, all equilibria exhibit

the property that the Malthusian sector disappears asymptotically.

5 Calibration

The data for England and Wales was already briefly discussed in the introduction. The objective

is to calibrate the parameters of the model to match the key data moments at the beginning of

17th century England. The key assumption that we make in order to be able to map the data
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moments to the model is that in the beginning of the 17th century, the economy is on a balanced

growth path on which both technologies operate.

The data on population growth and mortality rates are available in Wrigley, Davies, Oeppen,

and Schofield [31], Mitchell [28], and Human Mortality Database [22]. Most other data moments

come from Clark’s work [8] and [9]. We also need to estimate the time series for total factor

productivity in the rural and urban sectors. Unfortunately, we do not have the data on time

series of inputs and outputs of the two sectors necessary for standard growth accounting. To

get around this problem, we implement the dual-approach of TFP estimation, which uses the

assumption of profit-maximization. This approach requires time series data on wages in the two

sectors, land and capital rental rates, as well as the GDP deflator. These time series we either

take directly or infer from three of Gregory Clark’s papers [10], [8], [9].

We choose 25 years to represent the length of each time period. The parameters that we

have to calibrate are the Malthusian parameters A10, γ1, φ, µ, the Solow parameters A20, γ2, θ,

preference parameters α, β, cost of children parameters a, b, π, and the remaining parameters Λ

and δ.

Land in the model is a fixed factor whose value we normalize to one (Λ = 1). Since A10 and Λ

only enter the model as a product, A10Λ
1−φ−µ, we are allowed the second degree of normalization,

so we set A10 = 100. We also set A20 = 100 as there is no better way to infer it, and sensitivity

analysis shows that there is a wide range for A20 that will not have any quantitative bearing on

the results. It only has the impact on whether the Solow technology is being used in production

of output. We have 11 parameters left to calibrate. In order to pin them down we use 11 pieces

of information presented in Table 1 below8.

The general idea is to rewrite the balanced growth path equations in terms of moments

and parameters only, then solve for the model parameters using the information about the

corresponding moments in the data.

8Numbers in parenthesis indicate the annual rates
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Table 1: Data, around 1600

Moment Value Description

δ 0.723 (0.05) Depreciation

π 0.67 Probability of survival to 25
l1
l

0.6 Fraction of rural labor in total labor
y1
y

0.67 Fraction of rural output in total output
rk
y

0.16 Capital share in total income
ωl
y

0.6 Labor share in total income

r + 1− δ 2.666 (1.04) Interest rate

qn 0.42 Fraction of time spent with children (or not working)
a+b
a

4 Average time cost of surviving children

relative to that of non-surviving children

γ1,1600 1.0402 (1.0016) Growth of rural TFP around 1600

γ2,1600 1.0088 (1.00035) Growth of non-rural TFP around 1600

Notice that we are not trying to match per capita output growth and population growth in

our model. These will be predictions of the calibrated model that we can check against the data.

Depreciation and nominal interest rate are given in 25 year terms, the corresponding annual

terms are indicated in parenthesis. Historical estimates of annual depreciation rates range from

2.5% (Clark [8]) to over 15% (Allen [1]). We set δ = 0.723 to match 5% annual depreciation.

Probability of surviving to the age of 25 around 1600 was roughly constant at the level of 67%.

This number comes from Wrigley, Davies, Oeppen, and Schofield [31]. Hence, π is also pinned

down directly by the data.

Clark [9] provides labor and capital shares in total output produced in England as well as

relative labor and relative outputs in the two technologies. The nominal interest rate also comes

from one of Clark’s papers [10]. The fraction of time qn spent raising children is set to0.42 by

us and will be discussed later in this section. Recall that a is the fraction of time spent on each

newborn child while b represents the additional time cost incurred when a child lives to become

an adult. We set a+b
a
to 4 using an assumption of a functional form for instantaneous cost

function of raising children and the data on young-age mortality rates. We perform robustness

analysis for these moments and find that the results are not sensitive to these assumptions. The

discussion of how γ1,1600 and γ2,1600 are obtained is reserved for later in this section.

Calibrating φ, µ, θ

We can determine the labor share µ of the Malthusian technology by y1
y
, l1

l
, ωl

y
in conjunction

with the equilibrium property that wages equal the marginal product of labor in the Malthusian

sector, ω l
y
=
³
µy1
l1

´
l
y
. This implies µ = 0.537.
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Now that we know µ we can pin down capital share θ of the Solow technology by using y1
y
, ωl
y
,

and the equilibrium identity that the total labor income is given by the sum of the income paid to

the labor employed by the Malthusian technology and labor employed by the Solow technology,

µy1
y
+ (1− θ) y2

y
= ωl

y
. This determines θ = 0.273.

Similarly, we obtain the capital share φ of the Malthusian technology by using y1
y
, rk

y
, and

the equilibrium property that the total income paid to capital is the sum of rental income paid

to the capital employed in the Malthusian sector and capital employed in the Solow sector,

φy1
y
+ θ y1

y
= rk

y
. This gives φ = 0.104.

Calibrating γ1, γ2 and estimating TFP time series

Now we are ready to explain how we obtained γ1,1600 and γ2,1600 that appear in Table 1. We

first estimated TFP time series for each sector for the time period of 1585-1915. Then for each

sector we fit a trend consisting of two parts each characterized by a constant growth rate. The

growth rates characterizing the first part of the TFP trends in the two sectors are denoted by

γ1,1600 and γ2,1600.

In order to estimate the TFP time series we need to know the factor income shares in the

two sectors, φ, µ, θ. This is the reason for this estimation taking place in the middle of calibra-

tion. Next we explain more precisely how the time series for Malthusian and Solow total factor

productivity were constructed and how the trends were obtained.

Recall that we associate the output produced by Malthusian technology with output produced

in the rural sector and the Solow technology with output produced in the non-rural sector.

From profit maximization of the firms, using the dual-approach of estimating TFP, we derive

A1t =

µ
rt
φ

¶φµ
ω1t
µ

¶µµ
ρt

1− φ− µ

¶1−φ−µ
, (5.1)

A2t =
³rt
θ

´θ µ ω2t
1− θ

¶1−θ
, (5.2)

where rt (%) is the rental rate on capital, ωt is the real wage measured in units of the final good

per unit of labor, and ρt is the land rental price measured in units of the final good per acre.

Since the data available from Clark is the time series of rt (%), nominal wages w1t and w2t ($)
9,

9To be more precise, we infer w2 using Clark’s time series for the total wage bill in the economy w1L1+w2L2,
the bill in the rural sector w1L1, fraction of rural labor in total labor

L1
L , and the following identity:

w1L1 + w2L2
w2L2

=
w1L1
w2L2

+ 1,

w2 =
w1

w1L1+w2L2
w2L2

− 1
1

1
L1
L

− 1 .
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ρ̃t (% return on land rents), PΛt (price of land in $/acre), and the GDP deflator Pt, we infer the

real wages ωit and the real land rental price ρt by using

ωit =
wit

Pt
and ρt =

ρ̃tPΛt

Pt
.

Substituting these into (5.1) and (5.2) , we obtain the equations that allow us to estimate total

factor productivities using the time series data available:

A1t =

µ
rt
φ

¶φµ
w1t
µ

¶µµ
ρ̃tPΛt

1− φ− µ

¶1−φ−µ
P φ−1
t ,

A2t =
³rt
θ

´θ µ w2t
1− θ

¶1−θ
P θ−1
t .

Figure 6 below is a plot of these time series together with the fitted trends.
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Figure 6

Both, the rural and non-rural TFP time series exhibit a regime switch. Next we explain how

we find the two trends.

Let xt represent the data and yt its trend, which we restrict to be of the following form:

yt =

(
y0g

t
1

y0g
τ
1g

t−τ
2

0 ≤ t ≤ τ

τ ≤ t ≤ T
,

where g1 is the growth rate in the first regime and g2 is the growth rate in the second regime.
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To find the trend we solve

min
y0,g1,g2,τ

TX
t=0

(yt − xt)
2

Notice that this procedure determines the two growth rates as well as the timing of the regime

switch. Applying this methodology to both of the TFP time series we obtain the trends. That

is, we obtain the TFP growth rates characterizing the first part of the trends, γ1,1600 and γ2,1600,

as well as the endpoint growth rates that we denote by γ1,1900 and γ2,1900.We thus pin down two

more of the parameters, γ1 = 1.0402 and γ2 = 1.0088. These growth rates are given in 25 year

terms. Note the level of TFP in the estimated time series contains no information, it is just an

index since GDP deflator used is an index. Hence, the only relevant information that we obtain

from this estimation procedure is the growth rates. These are the growth rates that we will use

in our experiments. In fact, for the purpose of performing this experiment, we take an extra

step and smooth out the transition from γi,1600 to γi,1900 by fitting the logistic function to the

endpoint growth rates.

Interestingly, γ1 and γ2 give prediction to the growth rate of population and real per capita

output. Recall that the balanced growth path values for n and γ are determined by γ1 and

γ2. Hence, the obtained values for the growth rates of Malthusian and Solow TFP imply that

n =

µ
γ1γ

− 1−φ
1−θ

2

¶ 1
1−φ−µ

= 1.083 (or 0.32% in annual terms)and γ = γ
1

1−θ
2 = 1.0121 (or 0.048% in

annual terms). These predictions are roughly consistent with the data. Indeed, the population

in the beginning of the 17th century England grew at the annual rate of 0.4%, while output per

capita remained roughly stagnant.

Calibrating the remaining parameters

The preference parameter β is given by the Euler equation γ = β
n
[r + 1− δ] after we substi-

tute for γ, n, and the gross interest rate. This yields β = 0.411.

We set the total fraction of time spent raising children qn at 0.42. There is no obvious way

to infer qn from the data, but a simple example may be illustrative. Say a person has 100 hours

of productive time endowment per week. He works 40 hours, rests 30 hours and spends 30 hours

with all of his children. Since there is no leisure in our model, this pattern of time allocation

would imply qn = 30
30+40

∼= .429. The sensitivity analysis shows that the results are robust to

changes in qn.

We also set a+b
a
= 4. Recall that a is the fraction of time spent raising each newborn, and b is

the additional cost incurred on children that survive to adulthood. We pin down fraction a+b
a
by

assuming the instantaneous cost function of raising a child to be linear and declining with the

child’s age. We then use data on age-specific mortality rates around 1600 to infer the relative

size of b to a. We also perform sensitivity analysis for this fraction and find that the results are
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very robust to changes in a+b
a
. Hence, qn = 0.42 and a+b

a
= 4 determine a = 0.086 and b = 0.259.

The balanced growth path feasibility equation gives prediction for c
k
= r y

rk
+ 1 − δ − γn.

Using c
k
, n, γ, qn, l1

l
along with the data moments, r, rk

y
, y1
y
, in the remaining balanced growth

path equation, (1−α−β)(1−qn)
αµ

y
y1
1
r
rk
y
l1
l
ρ = qn − γn

(r+1−δ) , allows us to calibrate α to 0.583. For the

description of calibration as a solution to a system of linear equations see Appendix D.

The summarized parameters are presented in Table 2.

Table 2: Summary of Calibrated Parameters

Value Description

Malthusian Technology Parameters

A10 100 Initial level of TFP

γ1 1.04 TFP growth rate

φ 0.104 Capital share

µ 0.537 Labor share

Solow Technology Parameters

A20 100 Initial level of TFP

γ2 1.0088 TFP growth rate

θ 0.273 Capital share

Preference Parameters

α 0.583 Weight on consumption

β 0.411 Discount rate

Cost of Children

a 0.086 Fraction of time spent on each life birth

b 0.259 Additional time spent on each surviving child

Other parameters

δ 0.723 Depreciation

Λ 1 Land

6 Simulation results

The model is thus calibrated to match some key moments in the beginning of 17th century. Next

we perform the two experiments. The first experiment is changing the total factor productivity

of the two technologies according to our estimates as discussed above. The second experiment

is changing the probability of surviving to adulthood according to its historical estimates. The

data for the second experiment directly comes from Wrigley, Davies, Oeppen, and Schofield [31]

and Human Mortality Database [22]. Each period in the model corresponds to a specific year.
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We feed in the exogenous changes in accordance with historical data and solve for the model

dynamics. It is important to note that we assume perfect foresight.

As noted in the discussion about different types of balanced growth possible in our model,

both of the experiments lead to a switch to type 2 balanced growth path, characterized by the

Malthusian share of output converging to zero.

6.1 Changes in total factor productivities

The first experiment performed is changes in the growth rates of the total factor productivity

in the Malthusian and Solow sectors in accordance to our estimation described in the section

on calibration. Until the second half of the 18th century, rural technology enjoyed higher TFP

growth relative to that of the non-rural technology. Around 1750, the growth rate of the Solow

TFP overtook the Malthusian TFP growth. According to our estimates, the agricultural revo-

lution happens after the industrial revolution and on a smaller scale. The TFP time series that

are fed into the model are depicted in Figure 7.
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Figure 8 illustrates that this experiment generates labor reallocation from Malthus to Solow

in a manner consistent with the data. As the Solow sector becomes continuously more produc-

tive relative to the Malthusian sector it employes a higher fraction of available resources. The

equilibrium path converges to the asymptotic balanced growth path on which the fraction of the

Malthusian output relative to total output converges to zero. Observe that in our experiment
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changes in TFP first take place in 1750, hence, this experiement is not able to account for any

urbanization prior to 1750. Indeed, until the changes in TFP occur, the economy is on the bal-

anced growth path with fraction of total resources employed in the Malthusian sector remaining

constant.

1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Experiment 1: Changing γ1 and γ2

Year

ur
ba

ni
za

tio
n

Model
Data (Clark)
Data (Maddison)

Figure 8

1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Experiment 1: Changing γ1 and γ2

Year

In
du

st
ria

liz
at

io
n

Model
Data (Clark)
Data (Mitchell)

Figure 9

26



The results for the industrialization as depicted in Figure 9 are similar. As TFP in the Solow

technology becomes sufficiently large, resources reallocate towards the Solow technology and the

fraction of Solow output in total output converges to 1. It is important to notice that urbanization

and industrialization are imperfect data counterparts of l2/l and y2/y in our model. The main

reason is that we associate the Malthusian sector with rural production and Solow sector with

non-rural production. However, in the data rural production is not a perfect substitute of non-

rural production while in the model the Malthusian good is a perfect substitute to the Solow

good. It is nonetheless instructive to make these comparisons.

It is clear from Figure 10 that changes in the TFP growth rates generate the transition from

Malthusian stagnation to modern growth. Around 1600, the growth rate of per capita GDP is

near zero, or more precisely, GDP per capita grows at the annual rate of 0.048%. It then takes

off around 1800 and exhibits a sustained growth of nearly 1% per year. In the time period from

1700 to 1950, this experiment accounts for roughly 76% of the increase in per capita GDP in the

data. The reason why we are not able to generate a higher sustained growth is possibly the fact

that we stop the TFP estimation in 1915. If TFP growth increased after 1915, then it would

generate a higher growth in GDP per capita, and would make it more consistent with the data.

1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

100

150

200

250

300

350

400

450

500
 Experiment 1: Changing γ1 and γ2

Year

In
de

x 
of

 re
al

 G
D

P
 p

er
 c

ap
ita

Model
Data (Clark)
Data (Maddison)

Figure 10

It should be clear that since resources are reallocated towards the Solow sector, the land share

in total income declines. This happens simply because the Solow sector’s land share is 0. The

observed changes in capital and labor share are also well captured by this experiment.
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Figure 12

See Figures 11 and 12 for land and labor shares. Notice that factor shares in the two tech-

nologies are fixed at the calibrated levels. We conclude that changes in TFP alone can account

for long term trends in the observed factor income shares. This occurs as a result of resource

reallocation between sectors with different factor intensities.
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Notice from Figure 13 that the changes in TFP have a very small quantitative impact on

fertility rates. Interestigly, changes in TFP generate first a rise and then a fall in fertility rates.

Recall that productivity increases affect birth rates through two different channels in our model.

On one hand, rising productivity translates into higher income. Since surviving offspings are

normal goods, the income effect induces higher birth rate. On the other hand, since the time

cost is measured in terms of wages, the opportunity cost of raising children increases. Hence, the

substitution effect that puts downward pressure on birth rates is also present here. Clearly, the

income effect dominates before the second half of the eighteenth century, and for later years the

substitution effect becomes stronger. But in any case, the quantitative effect of changes in TFP

on fertility is quite small.
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Figure 13

Comparison of the population growth rate in the data to the one in the model is similar. As

depicted in Figure 14, starting at the calibrated level of 0.32% annual rate, population growth

increases first, but then decreases converging to 0.3% annual rate in the limit. This experiment

does generate a small hump in the population growth rate, but the timing of this hump is

premature compared to that in the data, and it is quantitatively insignificant.

This experiment leads us to conclude that changes in the productivity in the two sectors

represent an important force behind the observed patterns in per capita income, industrialization,

urbanization, as well as patterns in labor, capital, and land shares in total income. However,

changes in productivity are quantitatively unimportant in driving the fertility behavior.
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6.2 Changes in mortality

In the second experiment, changes occur in the probability of survival to the age of 25.

1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
0.4

0.5

0.6

0.7

0.8

0.9

1
        Experiment 2: Changing π           

Year

π

Figure 15

The data on these survival probabilities is taken from Wrigley, Davies, Oepenn, and Schofield

[31] and continued with the data from Human Mortality Database [22] starting in 1841. The
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series is then smoothed by using a 3 period moving average. Notice that probability of survival

declined until about 1700 when it started to rapidly increase. The most rapid rise began in the

second half of the 19th century, probably related to discoveries of pasteurization in 1864.

The next two figures show that changes in survival probability have large quantitative effects

on fertility behavior. When the probability of survival increases, it becomes less costly to produce

a surviving child (q declines). As a result, the number of surviving children always goes up in

our model, at least temporarily. On the other hand, fertility always drops since fewer births are

needed to achieve the same number of surviving children. We find that in the period from 1700

to 1950, changes in the probability of survival roughly account for 60% of the drop in the Crude

Birth Rate that occurred in England.
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Figure 18

Figures 17 and 18 present the time series of urbanization in the model and data but using

different time scale. As the probability of survival declines, population growth rate goes up. In

the long run, resources reallocate towards the Solow technology, although it takes a very long

time. Even in 2400, this experiment predicts that 10% of total labor is still employed by the

Malthusian technology. The model versus data patterns of industrialization look very similar to
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those of urbanization and therefore are not included.
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Figure 19
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Figure 20

Figures 19 and 20 illustrate the fact that changes in the probability of survival are quanti-

tatively insignificant in accounting for patterns in GDP per capita. Instead, they account for

around 60% of the drop in the Crude Birth Rate and the General Fertility Rate. The population

growth rate does go up from the annual rate of 0.32% to the annual rate of 0.75%, as observed
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in Figure 21, but the increase is small quantitatively. What is more bothersome is that neither

of the two experiments were able to generate a quantitatively significant hump in the population

growth rate despite the fact that it was theoretically possible in our model. We conclude that

factors other than young-age mortality and changes in growth rates of total factor productivities

are responsible for generating the hump in the population growth rate.
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7 Conclusion

To summarize, we developed a unified framework capable of generating the transition from

stagnation to growth. Two exogenous changes appear to have played an important role in this

transition. These are a decline in mortality rates and changes in the growth rates of total

factor productivity. During the transition we are able to reproduce the stylized facts about

the demographic transition: the transition from high levels to low levels of both, mortality and

fertility rates. The transition is accompanied by resource reallocation towards the Solow sector

which is consistent with the data.

We find that the decline in the young-age mortality accounted for 60% of the fall in General

Fertility Rate that occurred in England between 1700 and 1950. Over the same period, changes in

productivity accounted for 76% of the increase in GDP per capita and for nearly all of the decline

of land share in total output. Interestingly, both experiments generate a transition from Malthus

to Solow. However, changes in TFP do so in a manner consistent with empirical observations,

driving the share of the Malthusian technology to nearly zero in the period from 1600 to 2000.
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Changes in the probability of survival generate a much slower transition, predicting that even in

2400 the output produced by Malthusian technology would still comprise 10% of total output.

We also find that changes in TFP alone can account for long term trends in the observed factor

income shares. This occurs as a result of resource reallocation between sectors with different

factor intensities that remain constant over time.

One of the questions we raised was whether some common forces induced both changes in

output and population. In other words, was there a deeper link between the demographic and

economic change, or was their joint timing a mere coincidence? Our quantitative results suggest

that the explanation for changes in output and population need not be entirely common. In

fact, we find that changes in productivity are quantitatively insignificant in accounting for the

observed patterns in fertility behavior, while mortality changes are quantitatively relevant only

to population dynamics, and not to the other quantities predicted by the model. Certainly, this

does not preclude the existence of some common force that we left out of consideration in this

paper.

An important contribution of this work is the quantitative analysis of the equilibrium time

paths within the framework that is capable of generating a transition from Malthusian stagnation

to modern growth. We feed the exogenous changes into our model according to historical data.

Every period in our model corresponds to a particular date in the data. We perform careful

data analysis of the historical time series for England and Wales, working with mortality and

fertility data provided by Wrigley, Davies, Oepenn, and Schofield [31], Mitchell [28], and Human

Mortality Database [22]. We also estimate total factor productivities in the rural and urban

sectors using the dual-approach. This approach requires time series data on wages in the two

sectors, land and capital rental rates, as well as the GDP deflator. These time series we either

take directly or infer from three of Gregory Clark’s papers [10], [8], [9].

We find that solving for transition can lead to results that are quite different from those

obtained through the comparative statics analysis.

In the near future, we plan to extend our fertility model in two ways, both can be thought of

as robustness analysis of our results. In the present model, the goods produced by the Malthusian

and the Solow sectors are perfect substitutes. It would be instructive to relax this simplifying

assumption and check whether the main results remain. Another way to modify our model

would be to give the technological progress a better chance at accounting for fertility behavior.

If technological progress was modeled to be capital-biased, changes in productivity would possibly

have a stronger effect on fertility via quantity-quality trade-off. Alternatively, if technological

progress was modeled to be skill-biased and parents were allowed to invest into children’s skills,

we would also expect a stronger effect on fertility. Further sensitivity analysis would also involve

testing the robustness of our perfect foresight assumption and functional form choices.
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8 Appendix A: Proof of Proposition 1

Since each household takes into consideration the effect of his decisions on Ut+1, we can form a

dynastic Planning objective function by recursive substitution:

Ut = u (ct, nt) + βUt+1

= u (ct, nt) + β (u (ct+1, nt+1) + βUt+2)

= u (ct, nt) + βu (ct+1, nt+1) + β2 (u (ct+2, nt+2) + βUt+3)

= u (ct, nt) + βu (ct+1, nt+1) + β2u (ct+2, nt+2) + β3Ut+3 + ...

=
∞X
τ=t

βτ−tu(cτ , nτ) + lim
T→∞

βTUt+T

We show that in our model the last term is zero. Under this assumption the household’s problem

at time 0 is equivalent to the following dynastic Planning problem (P1).

Dynastic planner:

(P1)

max
{ct,nt,kt+1}t≥0

∞X
t=0

βtu (ct, nt)

s.t.

ct + (kt+1 + qtwt)nt = wt + (rt + 1− δ) kt + ρt
λ0Qt−1
τ=0 nτ

ct, nt, kt ≥ 0, k0 given

We rewrite per household variables in terms of dynastic aggregates and multiply the BC by

Nt. Call this problem (P2)

(P2)

max
{Ct,Nt+1,Kt+1}t≥0

∞X
t=0

βtu

µ
Ct

Nt
,
Nt+1

Nt

¶
s.t.

Ct +Kt+1 = (Nt − qtNt+1)wt + (rt + 1− δ)Kt + ρtΛ

Ct, Nt+1,Kt+1 ≥ 0

k0 given

By construction, (P2) is equivalent to (P1) . Clearly, the constraint set in (P2) is convex. For a

particular choice of u, it is possible to find parameter restrictions to guarantee that the objective

36



function in (P2) is strictly concave. Under these restrictions, the solution to (P2) is unique. We

use the FOC’s for (P2) to characterize the solution to (P1).

Denote the Lagrange multiplier on constraint at time t by ϕt. Then the first order conditions

are given by

[Ct] : βtu1 (t)
1

Nt
= ϕt; β

t+1u1 (t+ 1)
1

Nt+1
= ϕt+1

[Kt+1] : ϕt = ϕt+1 (rt+1 + 1− δ)

[Nt+1] : βtu2 (t)
1

Nt
− βt+1

µ
u1 (t+ 1)

Ct+1

N2
t+1

+ u2 (t+ 1)
Nt+2

N2
t+1

¶
= ϕtqtwt − ϕt+1wt+1

The first two yield the usual Euler Equation

u1 (t)

u1 (t+ 1)
=

β

nt
(rt+1 + 1− δ)

Divide the FOC w.r.t. [Nt+1] by ϕt+1 and substitute from the FOC w.r.t. [Ct]

βtu2 (t)
1

Nt
− βt+1

µ
u1 (t+ 1)

Ct+1

N2
t+1

+ u2 (t+ 1)
Nt+2

N2
t+1

¶
= ϕtqtwt − ϕt+1wt+1

βtu2 (t)
1
Nt

βt+1u1 (t+ 1)
1

Nt+1

−
βt+1

³
u1 (t+ 1)

Ct+1
N2
t+1
+ u2 (t+ 1)

Nt+2

N2
t+1

´
βt+1u1 (t+ 1)

1
Nt+1

=
ϕt

ϕt+1

qtwt − wt+1µ
u2 (t)

u1 (t)
− qtwt

¶
(rt+1 + 1− δ)− ct+1 =

u2 (t+ 1)

u1 (t+ 1)
nt+1 − wt+1

Hence, the set of conditions describing equlibrium is given by

u1 (t)

u1 (t+ 1)
=

β

nt
(rt+1 + 1− δ)Ã

u2 (t)

u1(t)
− qµA1tk

φ
1tl

µ−1
1t

µ
Λ

Nt

¶1−φ−µ!Ã
φA1t+1k

φ−1
1t+1l

µ
1t+1

µ
Λ

Nt+1

¶1−φ−µ
+ 1− δ

!
− ct+1 =

=
u2 (t+ 1)nt+1
u1 (t+ 1)

− µA1t+1k
φ
1t+1l

µ−1
1t+1

µ
Λ

Nt+1

¶1−φ−µ
φA1tk

φ−1
1t lµ1t

µ
Λ

Nt

¶1−φ−µ
= θA2t (kt − k1t)

θ−1 (1− l1t − qnt)
1−θ

µA1tk
φ
1tl

µ−1
1t

µ
Λ

Nt

¶1−φ−µ
= (1− θ)A2t (kt − k1t)

θ (1− l1t − qnt)
−θ

ct + kt+1nt = A1tk
φ
1tl

µ
1t

µ
Λ

Nt

¶1−φ−µ
+A2t (kt − k1t)

θ (1− l1t − qnt)
1−θ + (1− δ)kt
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Since (P1) is equivalent to (P2), sequences satisfying first order and transversality condition

of (P2) represent the solution to (P1). Under strict concavity of utility, we know there is a unique

solution to (P2).

Next we show that first order and transversality conditions corresponding to the Social Plan-

ning Problem (SP) are identical to those of (P2). This would show the equivalence of (SP) and

(P1).

max
{Ct,Nt,Kt+1,K1t,L1t}t≥0

∞X
t=0

βtu

µ
Ct

Nt
,
Nt+1

Nt

¶
s.t.

Ct +Kt+1 = A1tK
φ
1tL

µ
1tΛ

1−φ−µ +A2t (Kt −K1t)
θ (Nt − L1t − qNt+1)

1−θ + (1− δ)Kt

K0, N0 given

FOC’s

(Ct)

βtu1 (t)
1

Nt
= µt

(Kt+1)

µt = µt+1

h
θA2t+1 (Kt+1 −K1t+1)

θ−1 (Nt+1 − L1t+1 − qNt+2)
1−θ + 1− δ

i
(Nt+1)

βtu2 (t)
1

Nt
− βt+1

µ
u1 (t+ 1)

Ct+1

N2
t+1

+ u2 (t+ 1)
Nt+2

N2
t+1

¶
= µtq (1− θ)A2t (Kt −K1t)

θ (Nt − L1t − qNt+1)
−θ −

−µt+1 (1− θ)A2t+1 (Kt+1 −K1t+1)
θ (Nt+1 − L1t+1 − qNt+2)

−θ

(K1t)

φA1tK
φ−1
1t Lµ

1tΛ
1−φ−µ = θA2t (Kt −K1t)

θ−1 (Nt − L1t − qNt+1)
1−θ ≡ rt

(L1t)

µA1tK
φ
1tL

µ−1
1t Λ1−φ−µ = (1− θ)A2t (Kt −K1t)

θ (Nt − L1t − qNt+1)
−θ ≡ wt

The first two yield the Euler equation for capital

u1 (t)

u1 (t+ 1)
=

β

nt
(rt+1 + 1− δ)

38



The last ones are just factor rentals equalization across the two technologies. These corre-

spond to the conditions in the Decentralized model.

We just have left to check the second equation.

Devide the FOC w.r.t. Nt+1 by µt+1 and substitute from FOC w.r.t. Ct for µt and µt+1 :

βt+1u1 (t+ 1)
1

Nt+1
= µt+1 and

µt
µt+1

= rt+1 + 1− δ

So we get

βtu2 (t)
Nt+1

βt+1u1 (t+ 1)Nt

− βt+1
µ
u1 (t+ 1)

Ct+1

βt+1u1 (t+ 1)Nt+1

+ u2 (t+ 1)
Nt+2

βt+1u1 (t+ 1)Nt+1

¶
= (rt+1 + 1− δ) qwt − wt+1

or
u2 (t)nt

βu1 (t+ 1)
− ct+1 =

u2 (t+ 1)nt+1
u1 (t+ 1)

+ (rt+1 + 1− δ) qwt − wt+1

Substituting from the EE u1(t)
u1(t+1)

= β
nt
(rt+1 + 1− δ)this becomes

u2 (t)

u1(t)
(rt+1 + 1− δ)− ct+1 =

u2 (t+ 1)nt+1
u1 (t+ 1)

+ (rt+1 + 1− δ) qwt − wt+1

Hence, the set of first order and feasibility conditions is given by

u1 (t)

u1 (t+ 1)
=

β

nt
(rt+1 + 1− δ)Ã

u2 (t)

u1(t)
− qµA1tk

φ
1tl

µ−1
1t

µ
Λ

Nt

¶1−φ−µ!Ã
φA1t+1k

φ−1
1t+1l

µ
1t+1

µ
Λ

Nt+1

¶1−φ−µ
+ 1− δ

!
− ct+1 =

=
u2 (t+ 1)nt+1
u1 (t+ 1)

− µA1t+1k
φ
1t+1l

µ−1
1t+1

µ
Λ

Nt+1

¶1−φ−µ
φA1tk

φ−1
1t lµ1t

µ
Λ

Nt

¶1−φ−µ
= θA2t (kt − k1t)

θ−1 (1− l1t − qnt)
1−θ

µA1tk
φ
1tl

µ−1
1t

µ
Λ

Nt

¶1−φ−µ
= (1− θ)A2t (kt − k1t)

θ (1− l1t − qnt)
−θ

ct + kt+1nt = A1tk
φ
1tl

µ
1t

µ
Λ

Nt

¶1−φ−µ
+A2t (kt − k1t)

θ (1− l1t − qnt)
1−θ + (1− δ)kt

These are identical to the ones derived for (P2).
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9 Appendix B: Proof of Proposition 2

With this functional form, the Social Planning objective function can be written as

u

µ
Ct

Nt
,
Nt+1

Nt

¶
= α logCt + (1− α) logNt+1 − logNt

and the objective function becomes

U0 =
∞X
t=0

βt [α logCt + (1− α) logNt+1 − logNt]

= (α logC0 + (1− α) logN1 − logN0)

+β (α logC1 + (1− α) logN2 − logN1)

+β2 (α logC2 + (1− α) logN3 − logN2) + ...

= − logN0 +
∞X
t=0

βtα logCt +
∞X
t=0

βt (1− α− β) logNt+1

= − logN0 +
∞X
t=0

βt [α logCt + (1− α− β) logNt+1]

Since N0 is just a constant, the result holds.

10 Appendix C: Balanced Growth

Let r denote the return on capital and ρ = c/k on a balanced growth path.

Malthus Only (type two balanced growth path)

The unknows are (γ, n, r, ρ)

γ1γ
φ−1 = n1−φ−µ

γn = β (r + 1− δ)

(1− α− β)

α

φ

µ

ρ

r
(1− qn) = qn− γn

r + 1− δ

ρ+ γn =
r

φ
+ (1− δ)
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Solow, Malthus share converging to 0 (type three balanced growth path)

The unknowns are (γ, n, r, ρ)

γ = γ
1

1−θ
2

γn = β (r + 1− δ)

(1− α− β)

α

θ

(1− θ)

ρ

r
(1− qn) = qn− γn

r + 1− δ

ρ+ γn =
r

θ
+ (1− δ)

11 Appendix D: Calibration

The appendix summarizes calibration as a solution to a system of linear equations. π, δ, γ1, γ2 are

directly pinned down in the data, although γ1 and γ2 are pinned down only φ, µ, θ are determined.

The system of equations consists of 10 equations in terms of 10 unknowns, 7 of which are

parameters, µ, φ, θ, β, a, b, α, and 3 of which are moments that we do not take from the data: c
k
,

γ, n. Moments used are wl
y
, rk
y
, y1
y
, l1
l
, qn, a

b
, r.

wl

y
=

µy1
l1

l

y
(11.1)

wl

y
=

µy1
y
+
(1− θ) y2

y
(11.2)

rk

y
=

φy1
y
+

θy2
y

(11.3)

γ = γ
1

1−θ
2 (11.4)

n =

µ
γ1γ

− 1−φ
1−θ

2

¶ 1
1−φ−µ

(11.5)

γ =
β

n
[r + 1− δ] (11.6)

qn

n
=

b

π

a

b
+ b (11.7)

a = b
a

b
(11.8)

c

k
+ γn = r

y

rk
+ (1− δ) (11.9)

(1− α− β) (1− qn)

αµ

y

y1

1

r

rk

y

l1
l

c

k
= qn− γn

(r + 1− δ)
(11.10)
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12 Appendix E: Mapping of the Model to the Data

12.1 Population growth: beginning and end of period calculations

Beginning of period t : 2Nt adults and 2ftNt life births

End of period t : 2Nt adults and 2πtftNt children

The link between the two periods is

Nt+1 = πtftNt

Population growth when counted from the beginning of one period to the beginning of the

next period is

2Nt+1 + 2ft+1Nt+1

2Nt + 2ftNt
=
2πtftNt + 2ft+1πtftNt

2Nt + 2ftNt
=

πtft (1 + ft+1)

1 + ft
=

nt (1 + ft+1)

1 + ft

Population growth when counted from the end of one period to the end of the next period is

2Nt+1 + 2πt+1ft+1Nt+1

2Nt + 2πtftNt
=
2πtftNt + 2πt+1ft+1πtftNt

2Nt + 2πtftNt
=

nt (1 + nt+1)

1 + nt

12.2 Population growth: average over period calculation

We need to estimate the average level of population in period t

The number of adults is unchanged over the duration of a period

The number of children does change. We use age-specific mortality rates to determine the

average level of population.

Average number of children during period tµ
1

25
+
4

25
π10 +

5

25
π50 +

5

25
π100 +

10

25
π150

¶
2ftNt

Average population over period t is

POPt = 2Nt +

µ
1

25
+
4

25
π10 +

5

25
π50 +

5

25
π100 +

10

25
π150

¶
2ftNt
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12.3 TFR,GFR, and CBR

Crude Birth Rate in the data is

CBR =
#births

Population
∗ 1000

CBR in the model is given by

CBRt =
2ftNt

POPt
1000 =

ft

1 +
¡
1
25
+ 4

25
π10 +

5
25
π50 +

5
25
π100 +

10
25
π150
¢
ft
1000

What is the relationship between CBR over 25 years and CBR over 1 year?

CBR1 = #births in 1 year
Population

∗ 1000 and CBR25 = #births in 25 year
Population

∗ 1000.
CBR25 = 1000

³
B1+nB1+...+n24B1

1
25
∗(N1+nN1+...+n24N1)

´
= 25

³
B1
N1
1000

´
.

So, assuming population and births grow at some constant rate, 25 ∗ CBR1 = CBR25.

TFR is # births that a young woman would have in her lifetime if she followed age-specific

fertility rates for that year. We do not have data for total fertility rate, instead, we compare the

model to general fertility rate.

General fertility rate is

GFR =
#births ∗ 1000
#fertile women

=
(#births/Population) ∗ 1000
#fertile women/Population

=
CBR

fraction of fertile women in population

GFR in the model is

GFRt =
2ftNt

POPt
Nt

POPt

1000 = 2000ft

Similarly to CBR, 25GFR1 = GFR25.

Notice that GFR is different from TFR. They are only the same if age specific fertility rates

are the same.
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