
Chapter 1

Statics
Copyright 2004 by David Morin, morin@physics.harvard.edu

Before reading any of the text in this book, you should read Appendices B and C.
The material discussed there (dimensional analysis, checking limiting cases, etc.) is
extremely important. It’s fairly safe to say that an understanding of these topics is
absolutely necessary for an understanding of physics. And they make the subject a
lot more fun, too!

For many of you, the material in this first chapter will be mainly review. As such,
the text here will be relatively short. This is an “extra” chapter. Its main purpose
is that it provides me with an excuse to give you some nice statics problems. Try
as many as you like, but don’t go overboard; more important and relevant material
will soon be at hand.

1.1 Balancing forces

A “static” situation is one where all the objects are motionless. If an object remains
motionless, then F = ma tells us that the total force acting on it must be zero.
(The converse is not true, of course. The total force on an object is also zero if
it moves with constant nonzero velocity. But we’ll deal only with statics problems
here). The whole goal in a statics problem is to find out what the various forces have
to be so that there is zero net force acting on each object (and zero net torque, too,
but that’s the topic of the next section). Since a force is a vector, this goal involves
breaking the force up into its components. You can pick cartesian coordinates, polar
coordinates, or another set. It is usually clear from the problem which system will
make your calculations easiest. Once you pick a system, you simply have to demand
that the total force in each direction is zero.

There are many different types of forces in the world, most of which are large-
scale effects of complicated things going on at smaller scales. For example, the
tension in a rope comes from the chemical bonds that hold the molecules in the rope
together (and these chemical forces are just electrical forces). In doing a mechanics
problem involving a rope, there is certainly no need to analyze all the details of the
forces taking place at the molecular scale. You simply call the force in the rope a
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I-2 CHAPTER 1. STATICS

“tension” and get on with the problem. Four types of forces come up repeatedly:

Tension

Tension is the general name for a force that a rope, stick, etc., exerts when it is
pulled on. Every piece of the rope feels a tension force in both directions, except
the end point, which feels a tension on one side and a force on the other side from
whatever object is attached to the end.

In some cases, the tension may vary along the rope. The “Rope wrapped around
a pole” example at the end of this section is a good illustration of this. In other
cases, the tension must be the same everywhere. For example, in a hanging massless
rope, or in a massless rope hanging over a frictionless pulley, the tension must be
the same at all points, because otherwise there would be a net force on at least one
tiny piece, and then F = ma would yield an infinite acceleration for this tiny piece.

Normal force

This is the force perpendicular to a surface that the surface applies to an object.
The total force applied by a surface is usually a combination of the normal force and
the friction force (see below). But for frictionless surfaces such as greasy ones or
ice, only the normal force exists. The normal force comes about because the surface
actually compresses a tiny bit and acts like a very rigid spring. The surface gets
squashed until the restoring force equals the force the object applies.

Remark: For the most part, the only difference between a “tension” and a “normal
force” is the direction of the force. Both situations can be modeled by a spring. In the
case of a tension, the spring (a rope, a stick, or whatever) is stretched, and the force on
the given object is directed toward the spring. In the case of a normal force, the spring is
compressed, and the force on the given object is directed away from the spring. Things like
sticks can provide both normal forces and tensions. But a rope, for example, has a hard
time providing a normal force.

In practice, in the case of elongated objects such as sticks, a compressive force is usually
called a “compressive tension,” or a “negative tension,” instead of a normal force. So by
these definitions, a tension can point either way. At any rate, it’s just semantics. If you use
any of these descriptions for a compressed stick, people will know what you mean. ♣

Friction

Friction is the force parallel to a surface that a surface applies to an object. Some
surfaces, such as sandpaper, have a great deal of friction. Some, such as greasy ones,
have essentially no friction. There are two types of friction, called “kinetic” friction
and “static” friction.

Kinetic friction (which we won’t cover in this chapter) deals with two objects
moving relative to each other. It is usually a good approximation to say that the
kinetic friction between two objects is proportional to the normal force between
them. The constant of proportionality is called µk (the “coefficient of kinetic fric-
tion”), where µk depends on the two surfaces involved. Thus, F = µkN , where N
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is the normal force. The direction of the force is opposite to the motion.
Static friction deals with two objects at rest relative to each other. In the static

case, we have F ≤ µsN (where µs is the “coefficient of static friction”). Note the
inequality sign. All we can say prior to solving a problem is that the static friction
force has a maximum value equal to Fmax = µsN . In a given problem, it is most
likely less than this. For example, if a block of large mass M sits on a surface
with coefficient of friction µs, and you give the block a tiny push to the right (tiny
enough so that it doesn’t move), then the friction force is of course not equal to
µsN = µsMg to the left. Such a force would send the block sailing off to the left.
The true friction force is simply equal and opposite to the tiny force you apply.
What the coefficient µs tells us is that if you apply a force larger than µsMg (the
maximum friction force on a horizontal table), then the block will end up moving
to the right.

Gravity

Consider two point objects, with masses M and m, separated by a distance R. New-
ton’s gravitational force law says that the force between these objects is attractive
and has magnitude F = GMm/R2, where G = 6.67 · 10−11 m3/(kg · s2). As we
will show in Chapter 4, the same law applies to spheres. That is, a sphere may be
treated like a point mass located at its center. Therefore, an object on the surface
of the earth feels a gravitational force equal to

F = m

(
GM

R2

)
≡ mg, (1.1)

where M is the mass of the earth, and R is its radius. This equation defines g.
Plugging in the numerical values, we obtain (as you can check) g ≈ 9.8 m/s2. Every
object on the surface of the earth feels a force of mg downward. If the object is not
accelerating, then there must also be other forces present (normal forces, etc.) to
make the total force equal to zero.

Example (Block on a plane): A block of mass M rests on a fixed plane inclined
at angle θ. You apply a horizontal force of Mg on the block, as shown in Fig. 1.1.

MMg

θ

Figure 1.1
(a) Assume that the friction force between the block and the plane is large enough

to keep the block at rest. What are the normal and friction forces (call them N
and Ff ) that the plane exerts on the block?

(b) Let the coefficient of static friction be µ. For what range of angles θ will the
block remain still?

Solution:

(a) We will break the forces up into components parallel and perpendicular to the
plane. (The horizontal and vertical components would also work, but the calcu-
lation would be a little longer.) The forces are N , Ff , the applied Mg, and the
weight Mg, as shown in Fig. 1.2. Balancing the forces parallel and perpendic-

Mg

F

N

f

Mgθ

θ

Figure 1.2
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ular to the plane gives, respectively (with upward along the plane taken to be
positive),

Ff = Mg sin θ −Mg cos θ, and
N = Mg cos θ + Mg sin θ. (1.2)

Remarks: Note that if tan θ > 1, then Ff is positive (that is, it points up the plane).
And if tan θ < 1, then Ff is negative (that is, it points down the plane). There is
no need to worry about which way it points when drawing the diagram. Just pick a
direction to be positive, and if Ff comes out to be negative (as it does in the above
figure because θ < 45◦), so be it.

Ff ranges from −Mg to Mg, as θ ranges from 0 to π/2 (convince yourself that these

limiting values make sense). As an exercise, you can show that N is maximum when

tan θ = 1, in which case N =
√

2Mg and Ff = 0. ♣

(b) The coefficient µ tells us that |Ff | ≤ µN . Using eqs. (1.2), this inequality
becomes

Mg| sin θ − cos θ| ≤ µMg(cos θ + sin θ). (1.3)

The absolute value here signifies that we must consider two cases:

• If tan θ ≥ 1, then eq. (1.3) becomes

sin θ − cos θ ≤ µ(cos θ + sin θ) =⇒ tan θ ≤ 1 + µ

1− µ
. (1.4)

• If tan θ ≤ 1, then eq. (1.3) becomes

− sin θ + cos θ ≤ µ(cos θ + sin θ) =⇒ tan θ ≥ 1− µ

1 + µ
. (1.5)

Putting these two ranges for θ together, we have

1− µ

1 + µ
≤ tan θ ≤ 1 + µ

1− µ
. (1.6)

Remarks: For very small µ, these bounds both approach 1, which means that θ

must be very close to 45◦. This makes sense. If there is very little friction, then

the components along the plane of the horizontal and vertical Mg forces must nearly

cancel; hence, θ ≈ 45◦. A special value for µ is 1, because from eq. (1.6), we see that

µ = 1 is the cutoff value that allows θ to reach 0 and π/2. If µ ≥ 1, then any tilt of

the plane is allowed. ♣

Let’s now do an example involving a rope in which the tension varies with posi-
tion. We’ll need to consider differential pieces of the rope to solve this problem.

Example (Rope wrapped around a pole): A rope wraps an angle θ around a
pole. You grab one end and pull with a tension T0. The other end is attached to a
large object, say, a boat. If the coefficient of static friction between the rope and the
pole is µ, what is the largest force the rope can exert on the boat, if the rope is not
to slip around the pole?
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Solution: Consider a small piece of the rope that subtends an angle dθ. Let the
tension in this piece be T (which will vary slightly over the small length). As shown in
Fig. 1.3, the pole exerts a small outward normal force, Ndθ, on the piece. This normal

T

N

dθ

T sin dθ/2

dθ

Figure 1.3

force exists to balance the inward components of the tensions at the ends. These
inward components have magnitude T sin(dθ/2). Therefore, Ndθ = 2T sin(dθ/2).
The small-angle approximation, sin x ≈ x, then allows us to write this as Ndθ = T dθ.

The friction force on the little piece of rope satisfies Fdθ ≤ µNdθ = µT dθ. This
friction force is what gives rise to the difference in tension between the two ends of
the piece. In other words, the tension, as a function of θ, satisfies

T (θ + dθ) ≤ T (θ) + µT dθ

=⇒ dT ≤ µT dθ

=⇒
∫

dT

T
≤

∫
µdθ

=⇒ ln T ≤ µθ + C

=⇒ T ≤ T0e
µθ, (1.7)

where we have used the fact that T = T0 when θ = 0.

The exponential behavior here is quite strong (as exponential behaviors tend to be).
If we let µ = 1, then just a quarter turn around the pole produces a factor of eπ/2 ≈ 5.
One full revolution yields a factor of e2π ≈ 530, and two full revolutions yield a factor
of e4π ≈ 300, 000. Needless to say, the limiting factor in such a case is not your
strength, but rather the structural integrity of the pole around which the rope winds.

1.2 Balancing torques

In addition to balancing forces in a statics problem, we must also balance torques.
We’ll have much more to say about torque in Chapters 7 and 8, but we’ll need one
important fact here.

Consider the situation in Fig. 1.4, where three forces are applied perpendicularly

F

a b

2

F1

F3 

Figure 1.4

to a stick, which is assumed to remain motionless. F1 and F2 are the forces at the
ends, and F3 is the force in the interior. We have, of course, F3 = F1 + F2, because
the stick is at rest.

Claim 1.1 If the system is motionless, then F3a = F2(a + b). In other words, the
torques (force times distance) around the left end cancel. And you can show that
they cancel around any other point, too.

We’ll prove this claim in Chapter 7 by using angular momentum, but let’s give a
short proof here.

Proof: We’ll make one reasonable assumption, namely, that the correct relationship
between the forces and distances is of the form,

F3f(a) = F2f(a + b), (1.8)
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where f(x) is a function to be determined.1 Applying this assumption with the roles
of “left” and “right” reversed in Fig. 1.4, we have

F3f(b) = F1f(a + b) (1.9)

Adding the two preceding equations, and using F3 = F1 + F2, gives

f(a) + f(b) = f(a + b). (1.10)

This equation implies that f(nx) = nf(x) for any x and for any rational number
n, as you can show. Therefore, assuming f(x) is continuous, it must be the linear
function, f(x) = Ax, as we wanted to show. The constant A is irrelevant, because
it cancels in eq. (1.8).2

Note that dividing eq. (1.8) by eq. (1.9) gives F1f(a) = F2f(b), and hence
F1a = F2b, which says that the torques cancel around the point where F3 is applied.
You can show that the torques cancel around any arbitrary pivot point.

When adding up all the torques in a given physical setup, it is of course required
that you use the same pivot point when calculating each torque.

In the case where the forces aren’t perpendicular to the stick, the claim applies to
the components of the forces perpendicular to the stick. This makes sense, because
the components parallel to the stick have no effect on the rotation of the stick around
the pivot point. Therefore, referring to the figures shown below, the equality of the
torques can be written as

Faa sin θa = Fbb sin θb. (1.11)

This equation can be viewed in two ways:

• (Fa sin θa)a = (Fb sin θb)b. In other words, we effectively have smaller forces
acting on the given “lever-arms” (see Fig. 1.5).

F

F

F

a

a

a

a

a b

b

bb

b

sin

θ θ

θ

F sinθ

Figure 1.5
• Fa(a sin θa) = Fb(b sin θb). In other words, we effectively have the given forces

acting on smaller “lever-arms” (see Fig. 1.6).
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a

a
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b

b
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b
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θ

θ

θ sinθ

Figure 1.6

Claim 1.1 shows that even if you apply just a tiny force, you can balance the
torque due to a very large force, provided that you make your lever-arm sufficiently
long. This fact led a well-known mathematician of long ago to claim that he could
move the earth if given a long enough lever-arm.

One morning while eating my Wheaties,
I felt the earth move ‘neath my feeties.
The cause for alarm
Was a long lever-arm,
At the end of which grinned Archimedes!

1What we’re doing here is simply assuming linearity in F . That is, two forces of F applied at a
point should be the same as a force of 2F applied at that point. You can’t really argue with that.

2Another proof of this claim is given in Problem 12.
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One handy fact that comes up often is that the gravitational torque on a stick
of mass M is the same as the gravitational torque due to a point-mass M located at
the center of the stick. The truth of this statement relies on the fact that torque is
a linear function of the distance to the pivot point (see Exercise 7). More generally,
the gravitational torque on an object of mass M may be treated simply as the
gravitational torque due to a force Mg located at the center of mass.

We’ll have much more to say about torque in Chapters 7 and 8, but for now
we’ll simply use the fact that in a statics problem, the torques around any given
point must balance.

Example (Leaning ladder): A ladder leans against a frictionless wall. If the
coefficient of friction with the ground is µ, what is the smallest angle the ladder can
make with the ground and not slip?

Solution: Let the ladder have mass m and length `. As shown in Fig. 1.7, we have

N

N

F

mg

θ

l

1

2

Figure 1.7

three unknown forces: the friction force, F , and the normal forces, N1 and N2. And
we fortunately have three equations that will allow us to solve for these three forces:
ΣFvert = 0, ΣFhoriz = 0, and Στ = 0.
Looking at the vertical forces, we see that N1 = mg. And then looking at the
horizontal forces, we see that N2 = F . So we have quickly reduced the unknowns
from three to one.
We will now use Στ = 0 to find N2 (or F ). But first we must pick the “pivot” point
around which we will calculate the torques. Any stationary point will work fine,
but certain choices make the calculations easier than others. The best choice for the
pivot is generally the point at which the most forces act, because then the Στ = 0
equation will have the smallest number of terms in it (because a force provides no
torque around the point where it acts, since the lever-arm is zero).
In this problem, there are two forces acting at the bottom end of the ladder, so this is
the best choice for the pivot.3 Balancing the torques due to gravity and N2, we have

N2` sin θ = mg(`/2) cos θ =⇒ N2 =
mg

2 tan θ
. (1.12)

This is also the value of the friction force F . The condition F ≤ µN1 = µmg therefore
becomes

mg

2 tan θ
≤ µmg =⇒ tan θ ≥ 1

2µ
. (1.13)

Remarks: The factor of 1/2 in this answer comes from the fact that the ladder behaves
like a point mass located halfway up. As an exercise, you can show that the answer for the
analogous problem, but now with a massless ladder and a person standing a fraction f of
the way up, is tan θ ≥ f/µ.

Note that the total force exerted on the ladder by the floor points up at an angle given by
tan β = N1/F = (mg)/(mg/2 tan θ) = 2 tan θ. We see that this force does not point along
the ladder. There is simply no reason why it should. But there is a nice reason why it
should point upward with twice the slope of the ladder. This is the direction that causes the
lines of the three forces on the ladder to be concurrent, as shown in Fig. 1.8.

N

F

mg

2

floor
θ

Figure 1.8

3But you should verify that other choices for the pivot, for example, the middle or top of the
ladder, give the same result.
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This concurrency is a neat little theorem for statics problems involving three forces. The

proof is simple. If the three lines weren’t concurrent, then one force would produce a nonzero

torque around the intersection point of the other two lines of force.4 ♣

Statics problems often involve a number of decisions. If there are various parts
to the system, then you must decide which subsystems you want to balance the
forces and torques on. And furthermore, you must decide which point to use as the
origin for calculating the torques. There are invariably many choices that will give
you the information you need, but some will make your calculations much cleaner
than others (Exercise 11 is a good example of this). The only way to know how to
choose wisely is to start solving problems, so you may as well tackle some. . .

4The one exception to this reasoning is where no two of the lines intersect; that is, where all
three lines are parallel. Equilibrium is certainly possible in such a scenario, as we saw in Claim 1.1.
Of course, you can hang onto the concurrency theorem in this case if you consider the parallel lines
to meet at infinity.
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1.3 Exercises

Section 1.1 Balancing forces

1. Pulling a block *
A person pulls on a block with a force F , at an angle θ with respect to the
horizontal. The coefficient of friction between the block and the ground is µ.
For what θ is the F required to make the block slip a minimum?

2. Bridges **

(a) Consider the first bridge in Fig. 1.9, made of three equilateral triangles

m

m

Figure 1.9

of beams. Assume that the seven beams are massless and that the con-
nection between any two of them is a hinge. If a car of mass m is located
at the middle of the bridge, find the forces (and specify tension or com-
pression) in the beams. Assume that the supports provide no horizontal
forces on the bridge.

(b) Same question, but now with the second bridge in Fig. 1.9, made of seven
equilateral triangles.

(c) Same question, but now with the general case of 4n− 1 equilateral trian-
gles.

3. Keeping the book up *
The task of Problem 4 is to find the minimum force required to keep a book
up. What is the maximum allowable force? Is there a special angle that arises?
Given µ, make a rough plot of the allowed values of F for −π/2 < θ < π/2.

4. Rope between inclines **
A rope rests on two platforms that are both inclined at an angle θ (which you
are free to pick), as shown in Fig. 1.10. The rope has uniform mass density,

θθ

Figure 1.10
and its coefficient of friction with the platforms is 1. The system has left-right
symmetry. What is the largest possible fraction of the rope that does not
touch the platforms? What angle θ allows this maximum value?

5. Hanging chain **
A chain of mass M hangs between two walls, with its ends at the same height.
The chain makes an angle of θ with each wall, as shown in Fig. 1.11. Find

M

θθ

Figure 1.11

the tension in the chain at the lowest point. Solve this by:

(a) Considering the forces on half of the chain. (This is the quick way.)

(b) Using the fact that the height of a hanging chain is given by y(x) =
(1/α) cosh(αx), and considering the vertical forces on an infinitesimal
piece at the bottom. (This is the long way.)



I-10 CHAPTER 1. STATICS

Section 1.2: Balancing torques

6. Direction of the force *
A stick is connected to other parts of a system by hinges at its ends. Show
that if the stick is massless, then the forces it feels at the hinges are directed
along the stick; but if the stick has mass, then the forces need not point along
the stick.

7. Gravitational torque *
A horizontal stick of mass M and length L is pivoted at one end. Integrate
the gravitational torque along the stick (relative to the pivot), and show that
the result is the same as the torque due to a mass M located at the center of
the stick.

8. Tetherball *
A ball is held up by a string, as shown in Fig. 1.12, with the string tangent

θ

µ

Figure 1.12

to the ball. If the angle between the string and the wall is θ, what is the
minimum coefficient of static friction between the ball and the wall, if the ball
is not to fall?

9. Ladder on a corner *
A ladder of mass M and length L leans against a frictionless wall, with a
quarter of its length hanging over a corner, as shown in Fig. 1.13. Assuming

ML

θ

1/4 of the

length

Figure 1.13

that there is sufficient friction at the corner to keep the ladder at rest, what
is the total force that the corner exerts on the ladder?

10. Stick on a corner *
You hold one end of a stick of mass M and length L. A quarter of the way
up the stick, it rests on a frictionless corner of a table, as shown in Fig. 1.14.

hand

ML

θ

Figure 1.14

The stick makes an angle θ with the horizontal. What is the magnitude of the
force your hand must apply, to keep the stick in this position? For what angle
is the vertical component of your force equal to zero?

11. Two sticks **
Two sticks, each of mass m and length `, are connected by a hinge at their
top ends. They each make an angle θ with the vertical. A massless string
connects the bottom of the left stick to the right stick, perpendicularly, as
shown in Fig. 1.15. The whole setup stands on a frictionless table.

θ θ
m m

l l

stri
ng

Figure 1.15

(a) What is the tension in the string?

(b) What force does the left stick exert on the right stick at the hinge? Hint:
No messy calculations required!
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12. Two sticks and a wall **
Two sticks are connected, with hinges, to each other and to a wall. The bottom
stick is horizontal and has length L, and the sticks make an angle of θ with
each other, as shown in Fig. 1.16. If both sticks have the same mass per unit

θ

L

Figure 1.16

length, ρ, find the horizontal and vertical components of the force that the
wall exerts on the top hinge, and show that the magnitude goes to infinity for
both θ → 0 and θ → π/2. 5

13. Stick on a circle **
Using the result from Problem 16 for the setup shown in Fig. 1.17, show that

θ

R

Figure 1.17

if the system is to remain at rest, then the coefficient of friction:

(a) between the stick and the circle must satisfy

µ ≥ sin θ

(1 + cos θ)
. (1.14)

(b) between the stick and the ground must satisfy6

µ ≥ sin θ cos θ

(1 + cos θ)(2− cos θ)
. (1.15)

5The force must therefore achieve a minimum at some intermediate angle. If you want to go
through the algebra, you can show that this minimum occurs when cos θ =

√
3 − 1, which gives

θ ≈ 43◦.
6If you want to go through the algebra, you can show that the maximum of the right-hand side

occurs when cos θ =
√

3 − 1, which gives θ ≈ 43◦. (Yes, I did just cut and paste this from the
previous footnote. But it’s still correct!) This is the angle for which the stick is most likely to slip
on the ground.
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1.4 Problems

Section 1.1: Balancing forces

1. Hanging mass

A mass m, held up by two strings, hangs from a ceiling, as shown in Fig. 1.18.

T
T

m

2

θ

1

Figure 1.18
The strings form a right angle. In terms of the angle θ shown, what is the
tension in each string?

2. Block on a plane

A block sits on a plane that is inclined at an angle θ. Assume that the friction
force is large enough to keep the block at rest. What are the horizontal
components of the friction and normal forces acting on the block? For what θ
are these horizontal components maximum?

3. Motionless chain *
A frictionless planar curve is in the shape of a function which has its endpoints
at the same height but is otherwise arbitrary. A chain of uniform mass per
unit length rests on the curve from end to end, as shown in Fig. 1.19. Show,Figure 1.19
by considering the net force of gravity along the curve, that the chain will not
move.

4. Keeping the book up *
A book of mass M is positioned against a vertical wall. The coefficient of
friction between the book and the wall is µ. You wish to keep the book from
falling by pushing on it with a force F applied at an angle θ with respect to
the horizontal (−π/2 < θ < π/2), as shown in Fig. 1.20. For a given θ, what

θ

µ
M

F

Figure 1.20

is the minimum F required? What is the limiting value of θ, below which
there does not exist an F that will keep the book up?

5. Objects between circles **
Each of the following planar objects is placed, as shown in Fig. 1.21, between

L

L

θ

θ

θ

R

F F

Figure 1.21

two frictionless circles of radius R. The mass density of each object is σ, and
the radii to the points of contact make an angle θ with the horizontal. For
each case, find the horizontal force that must be applied to the circles to keep
them together. For what θ is this force maximum or minimum?

(a) An isosceles triangle with common side length L.

(b) A rectangle with height L.

(c) A circle.



1.4. PROBLEMS I-13

6. Hanging rope

A rope with length L and mass density ρ per unit length is suspended vertically
from one end. Find the tension as a function of height along the rope.

7. Rope on a plane *
A rope with length L and mass density ρ per unit length lies on a plane
inclined at angle θ (see Fig. 1.22). The top end is nailed to the plane, and the θ

µ
L

Figure 1.22coefficient of friction between the rope and plane is µ. What are the possible
values for the tension at the top of the rope?

8. Supporting a disk **

(a) A disk of mass M and radius R is held up by a massless string, as shown
in Fig. 1.23. The surface of the disk is frictionless. What is the tension

R

M

Figure 1.23

in the string? What is the normal force per unit length the string applies
to the disk?

(b) Let there now be friction between the disk and the string, with coefficient
µ. What is the smallest possible tension in the string at its lowest point?

9. Hanging chain ****

(a) A chain with uniform mass density per unit length hangs between two
given points on two walls. Find the shape of the chain. Aside from
an arbitrary additive constant, the function describing the shape should
contain one unknown constant.

(b) The unknown constant in your answer depends on the horizontal distance
d between the walls, the vertical distance λ between the support points,
and the length ` of the chain (see Fig. 1.24). Find an equation involving

d

λ

l

Figure 1.24

these given quantities that determines the unknown constant.

10. Hanging gently **
A chain with uniform mass density per unit length hangs between two supports
located at the same height, a distance 2d apart (see Fig. 1.25). What should

2d

l = ?

Figure 1.25

the length of the chain be so that the magnitude of the force at the supports is
minimized? You may use the fact that a hanging chain takes the form, y(x) =
(1/α) cosh(αx). You will eventually need to solve an equation numerically.

11. Mountain Climber ****
A mountain climber wishes to climb up a frictionless conical mountain. He
wants to do this by throwing a lasso (a rope with a loop) over the top and
climbing up along the rope. Assume that the climber is of negligible height,
so that the rope lies along the mountain, as shown in Fig. 1.26.

α

Figure 1.26

At the bottom of the mountain are two stores. One sells “cheap” lassos (made
of a segment of rope tied to a loop of fixed length). The other sells “deluxe”
lassos (made of one piece of rope with a loop of variable length; the loop’s
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length may change without any friction of the rope with itself). See Fig. 1.27.

cheap

deluxe

Figure 1.27

When viewed from the side, the conical mountain has an angle α at its peak.
For what angles α can the climber climb up along the mountain if he uses:

(a) a “cheap” lasso?

(b) a “deluxe” lasso?

Section 1.2: Balancing torques

12. Equality of torques **
This problem gives another way of demonstrating Claim 1.1, using an inductive
argument. We’ll get you started, and then you can do the general case.

Consider the situation where forces F are applied upward at the ends of a
stick of length `, and a force 2F is applied downward at the midpoint (see
Fig. 1.28). The stick will not rotate (by symmetry), and it will not translate

F F

2F

2F

2F

Figure 1.28

(because the net force is zero). If we wish, we may consider the stick to have
a pivot at the left end. If we then erase the force F on the right end and
replace it with a force 2F at the middle, then the two 2F forces in the middle
will cancel, so the stick will remain at rest.7 Therefore, we see that a force F
applied at a distance ` from a pivot is equivalent to a force 2F applied at a
distance `/2 from the pivot, in the sense that they both have the same effect
in cancelling out the rotational effect of the downwards 2F force.

Now consider the situation where forces F are applied upward at the ends,
and forces F are applied downward at the `/3 and 2`/3 marks (see Fig. 1.29).

2F

F

F F

F

F F

Figure 1.29

The stick will not rotate (by symmetry), and it will not translate (because the
net force is zero). Consider the stick to have a pivot at the left end. From
the above paragraph, the force F at 2`/3 is equivalent to a force 2F at `/3.
Making this replacement, we now have a total force of 3F at the `/3 mark.
Therefore, we see that a force F applied at a distance ` is equivalent to a force
3F applied at a distance `/3.

Your task is to now use induction to show that a force F applied at a distance
` is equivalent to a force nF applied at a distance `/n, and to then argue why
this demonstrates Claim 1.1.

13. Find the force *
A stick of mass M is held up by supports at each end, with each support
providing a force of Mg/2. Now put another support somewhere in the middle,
say, at a distance a from one support and b from the other; see Fig. 1.30.

a b

M

Figure 1.30

What forces do the three supports now provide? Can you solve this?

7There will now be a different force applied at the pivot, namely zero, but the purpose of the
pivot is to simply apply whatever force is necessary to keep the left end motionless.
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14. Leaning sticks *

One stick leans on another as shown in Fig. 1.31. A right angle is formed

θ

Figure 1.31

where they meet, and the right stick makes an angle θ with the horizontal.
The left stick extends infinitesimally beyond the end of the right stick. The
coefficient of friction between the two sticks is µ. The sticks have the same
mass density per unit length and are both hinged at the ground. What is the
minimum angle θ for which the sticks do not fall?

15. Supporting a ladder *

A ladder of length L and mass M has its bottom end attached to the ground
by a pivot. It makes an angle θ with the horizontal, and is held up by a
massless stick of length ` which is also attached to the ground by a pivot (see
Fig. 1.32). The ladder and the stick are perpendicular to each other. Find the

θ

L

M

l

Figure 1.32

force that the stick exerts on the ladder.

16. Stick on a circle **

A stick of mass density ρ per unit length rests on a circle of radius R (see
Fig. 1.33). The stick makes an angle θ with the horizontal and is tangent

θ

R

Figure 1.33

to the circle at its upper end. Friction exists at all points of contact, and
assume that it is large enough to keep the system at rest. Find the friction
force between the ground and the circle.

17. Leaning sticks and circles ***

A large number of sticks (with mass density ρ per unit length) and circles
(with radius R) lean on each other, as shown in Fig. 1.34. Each stick makes

...

θ
R

Figure 1.34

an angle θ with the horizontal and is tangent to a circle at its upper end. The
sticks are hinged to the ground, and every other surface is frictionless (unlike
in the previous problem). In the limit of a very large number of sticks and
circles, what is the normal force between a stick and the circle it rests on, very
far to the right? (Assume that the last circle leans against a wall, to keep it
from moving.)

18. Balancing the stick **

Given a semi-infinite stick (that is, one that goes off to infinity in one direc-
tion), determine how its density should depend on position so that it has the
following property: If the stick is cut at an arbitrary location, the remaining
semi-infinite piece will balance on a support that is located a distance ` from
the end (see Fig. 1.35).

l

Figure 1.35

19. The spool **

A spool consists of an axle of radius r and an outside circle of radius R which
rolls on the ground. A thread is wrapped around the axle and is pulled with
tension T , at an angle θ with the horizontal (see Fig. 1.36).

T
R

r

θ

Figure 1.36



I-16 CHAPTER 1. STATICS

(a) Given R and r, what should θ be so that the spool does not move?
Assume that the friction between the spool and the ground is large enough
so that the spool doesn’t slip.

(b) Given R, r, and the coefficient of friction µ between the spool and the
ground, what is the largest value of T for which the spool remains at
rest?

(c) Given R and µ, what should r be so that you can make the spool slip
with as small a T as possible? That is, what should r be so that the
upper bound on T from part (b) is as small as possible? What is the
resulting value of T?
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1.5 Solutions

1. Hanging mass

Balancing the horizontal and vertical force components on the mass gives, respectively
(see Fig. 1.37),

T
T

m

2

θ

θ1

Figure 1.37T1 sin θ = T2 cos θ,

T1 cos θ + T2 sin θ = mg. (1.16)

Solving for T1 in the first equation, and substituting into the second equation, gives

T1 = mg cos θ, and T2 = mg sin θ. (1.17)

As a double-check, these have the correct limits when θ → 0 or θ → π/2.

2. Block on a plane

Balancing the forces shown in Fig. 1.38, wee see that F = mg sin θ and N = mg cos θ.

F
f

N

mg

θ mgcosθ

mgsinθ

Figure 1.38

The horizontal components of these are F cos θ = mg sin θ cos θ (to the right), and
N sin θ = mg cos θ sin θ (to the left). These are equal, as they must be, because the
net horizontal force on the block is zero. To maximize the value of mg sin θ cos θ, we
can either take the derivative, or we can write it as (mg/2) sin 2θ, from which it is
clear that the maximum occurs at θ = π/4. The maximum value is mg/2.

3. Motionless chain

Let the curve be described by the function f(x), and let it run from x = a to x = b.
Consider a little piece of the chain between x and x + dx (see Fig. 1.39). The length

x x+dx

f 'dx

θ

Figure 1.39

of this piece is
√

1 + f ′2 dx, and so its mass is ρ
√

1 + f ′2 dx, where ρ is the mass
per unit length. The component of the gravitational acceleration along the curve is
−g sin θ = −gf ′/

√
1 + f ′2, with positive corresponding to moving along the curve

from a to b. The total force along the curve is therefore

F =
∫ b

a

(−g sin θ) dm

=
∫ b

a

(
−gf ′√
1 + f ′2

) (
ρ
√

1 + f ′2 dx
)

= −ρg

∫ b

a

f ′ dx

= −gρ
(
f(a)− f(b)

)

= 0. (1.18)

4. Keeping the book up

The normal force from the wall is F cos θ, so the friction force holding the book up
is at most µF cos θ. The other vertical forces on the book are the gravitational force,
which is −Mg, and the vertical component of F , which is F sin θ. If the book is to
stay up, we must have

µF cos θ + F sin θ −Mg ≥ 0. (1.19)

Therefore, F must satisfy

F ≥ Mg

µ cos θ + sin θ
. (1.20)
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There is no possible F that satisfies this condition if the right-hand side is infinite.
This occurs when

tan θ = −µ. (1.21)

If θ is more negative than this, then it is impossible to keep the book up, no matter
how hard you push.

5. Objects between circles

(a) Let N be the normal force between the circles and the triangle. The goal in this
problem is to find the horizontal component of N , that is, N cos θ.
From Fig. 1.40, we see that the upward force on the triangle from the normal

θ

2θ

N

Figure 1.40 forces is 2N sin θ. This must equal the weight of the triangle, which is gσ times
the area. Since the bottom angle of the isosceles triangle is 2θ, the top side has
length 2L sin θ, and the altitude to this side is L cos θ. So the area of the triangle
is L2 sin θ cos θ. The mass is therefore σL2 sin θ cos θ. Equating the weight with
the upward component of the normal forces gives N = (gσL2/2) cos θ. The
horizontal component of N is therefore

N cos θ =
gσL2 cos2 θ

2
. (1.22)

This equals zero when θ = π/2, and it increases as θ decreases, even though the
triangle is getting smaller. It has the interesting property of approaching the
finite number gσL2/2, as θ → 0.

(b) In Fig. 1.41, the base of the rectangle has length 2R(1 − cos θ). Its mass is

L

 θ 

R

N

Rcosθ

Figure 1.41

therefore σ2RL(1− cos θ). Equating the weight with the upward component of
the normal forces, 2N sin θ, gives N = gσRL(1 − cos θ)/ sin θ. The horizontal
component of N is therefore

N cos θ =
gσRL(1− cos θ) cos θ

sin θ
. (1.23)

This equals zero for both θ = π/2 and θ = 0 (because 1 − cos θ ≈ θ2/2 goes to
zero faster than sin θ ≈ θ, for small θ). Taking the derivative to find where it
reaches a maximum, we obtain (using sin2 θ = 1− cos2 θ),

cos3 θ − 2 cos θ + 1 = 0. (1.24)

Fortunately, there is an easy root of this cubic equation, namely cos θ = 1, which
we know is not the maximum. Dividing through by the factor (cos θ − 1) gives

cos2 θ + cos θ − 1 = 0. (1.25)

The roots of this quadratic equation are

cos θ =
−1±√5

2
. (1.26)

We must choose the plus sign, because we need | cos θ| ≤ 1. So our answer is
cos θ = 0.618, which interestingly is the golden ratio. The angle θ is ≈ 51.8◦.

(c) In Fig. 1.42, the length of the hypotenuse shown is R sec θ, so the radius of

 θ 

R

Rsecθ

Figure 1.42
the top circle is R(sec θ − 1). Its mass is therefore σπR2(sec θ − 1)2. Equating
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the weight with the upward component of the normal forces, 2N sin θ, gives
N = gσπR2(sec θ − 1)2/(2 sin θ). The horizontal component of N is therefore

N cos θ =
gσπR2 cos θ

2 sin θ

(
1

cos θ
− 1

)2

. (1.27)

This equals zero when θ = 0 (using cos θ ≈ 1 − θ2/2 and sin θ ≈ θ, for small
θ). For θ → π/2, it behaves like 1/ cos θ, which goes to infinity. In this limit,
N points almost vertically, but its magnitude is so large that the horizontal
component still approaches infinity.

6. Hanging rope

Let T (y) be the tension as a function of height. Consider a small piece of the rope
between y and y + dy (0 ≤ y ≤ L). The forces on this piece are T (y + dy) upward,
T (y) downward, and the weight ρg dy downward. Since the rope is at rest, we have
T (y + dy) = T (y) + ρg dy. Expanding this to first order in dy gives T ′(y) = ρg. The
tension in the bottom of the rope is zero, so integrating from y = 0 up to a position
y gives

T (y) = ρgy. (1.28)

As a double-check, at the top end we have T (L) = ρgL, which is the weight of the
entire rope, as it should be.
Alternatively, you can simply write down the answer, T (y) = ρgy, by noting that the
tension at a given point in the rope is what supports the weight of all the rope below
it.

7. Rope on a plane

The component of the gravitational force along the plane is (ρL)g sin θ, and the max-
imum value of the friction force is µN = µ(ρL)g cos θ. Therefore, you might think
that the tension at the top of the rope is ρLg sin θ − µρLg cos θ. However, this is not
necessarily the value. The tension at the top depends on how the rope is placed on
the plane.
If, for example, the rope is placed on the plane without being stretched, the friction
force will point upwards, and the tension at the top will indeed equal ρLg sin θ −
µρLg cos θ. Or it will equal zero if µρLg cos θ > ρLg sin θ, in which case the friction
force need not achieve its maximum value.
If, on the other hand, the rope is placed on the plane after being stretched (or equiva-
lently, it is dragged up along the plane and then nailed down), then the friction force
will point downwards, and the tension at the top will equal ρLg sin θ + µρLg cos θ.
Another special case occurs when the rope is placed on a frictionless plane, and then
the coefficient of friction is “turned on” to µ. The friction force will still be zero.
Changing the plane from ice to sandpaper (somehow without moving the rope) won’t
suddenly cause there to be a friction force. Therefore, the tension at the top will
equal ρLg sin θ.
In general, depending on how the rope is placed on the plane, the tension at the top
can take any value from a maximum of ρLg sin θ + µρLg cos θ, down to a minimum
of ρLg sin θ − µρLg cos θ (or zero, whichever is larger). If the rope were replaced by
a stick (which could support a compressive force), then the tension could achieve
negative values down to ρLg sin θ − µρLg cos θ, if this happens to be negative.
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8. Supporting a disk

(a) The gravitational force downward on the disk is Mg, and the force upward is
2T . These forces must balance, so

T =
Mg

2
. (1.29)

We can find the normal force per unit length that the string applies to the disk
in two ways.

First method: Let N dθ be the normal force on an arc of the disk that subtends
an angle dθ. Such an arc has length R dθ, so N/R is the desired normal force
per unit arclength. The tension in the string is constant because the string
is massless, so N is constant, independent of θ. The upward component of
the normal force is N dθ cos θ, where θ is measured from the vertical (that is,
−π/2 ≤ θ ≤ π/2 here). Since the total upward force is Mg, we must have

∫ π/2

−π/2

N cos θ dθ = Mg. (1.30)

The integral equals 2N , so we find N = Mg/2. The normal force per unit
length, N/R, is then Mg/2R.

Second method: Consider the normal force, N dθ, on a small arc of the disk
that subtends and angle dθ. The tension forces on each end of the corresponding
small piece of string almost cancel, but they don’t exactly, because they point
in slightly different directions. Their non-zero sum is what produces the normal
force on the disk. From Fig. 1.43, we see that the two forces have a sum

T

dθ

T sin dθ/2

Figure 1.43

of 2T sin(dθ/2), directed inward. Since dθ is small, we can use sinx ≈ x to
approximate this as T dθ. Therefore, N dθ = T dθ, and so N = T . The normal
force per unit arclength, N/R, then equals T/R. Using T = Mg/2 from eq.
(1.29), we arrive at N/R = Mg/2R.

(b) Let T (θ) be the tension, as a function of θ, for −π/2 ≤ θ ≤ π/2. T will depend
on θ now, because there is a tangential friction force. Most of the work for this
problem was already done in the example at the end of Section 1.1. We will
simply invoke the second line of eq. (1.7), which says that8

dT ≤ µT dθ. (1.31)

Separating variables and integrating from the bottom of the rope up to an angle
θ gives ln

(
(T (θ)/T (0)

) ≤ µθ. Exponentiating this gives

T (θ) ≤ T (0)eµθ. (1.32)

Letting θ = π/2, and using T (π/2) = Mg/2, we have Mg/2 ≤ T (0)eµπ/2. We
therefore see that the tension at the bottom point must satisfy

T (0) ≥ Mg

2
e−µπ/2. (1.33)

8This holds for θ > 0. There would be a minus sign on the right-hand side if θ < 0. But since
the tension is symmetric around θ = 0 in the case we’re concerned with, we’ll just deal with θ > 0.
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This minimum value of T (0) goes to Mg/2 as µ → 0, as it should. And it goes
to zero as µ →∞, as it should (imagine a very sticky surface, so that the friction
force from the rope near θ = π/2 accounts for essentially all the weight). But
interestingly, it doesn’t exactly equal zero, no matter now large µ is.

9. Hanging chain

(a) Let the chain be described by the function y(x), and let the tension be described
by the function T (x). Consider a small piece of the chain, with endpoints at
x and x + dx, as shown in Fig. 1.44. Let the tension at x pull downward at

θ

θ 

1

2

x+dxxT(x)

T(x+dx)

Figure 1.44

an angle θ1 with respect to the horizontal, and let the tension at x + dx pull
upward at an angle θ2 with respect to the horizontal. Balancing the horizontal
and vertical forces on the small piece of chain gives

T (x + dx) cos θ2 = T (x) cos θ1,

T (x + dx) sin θ2 = T (x) sin θ1 +
gρ dx

cos θ1
, (1.34)

where ρ is the mass per unit length. The second term on the right-hand side is
the weight of the small piece, because dx/ cos θ1 (or dx/ cos θ2, which is essen-
tially the same) is its length. We must now somehow solve these two differential
equations for the two unknown functions, y(x) and T (x). There are various
ways to do this. Here is one method, broken down into three steps.

First step: Squaring and adding eqs. (1.34) gives

(
T (x + dx)

)2 =
(
T (x)

)2 + 2T (x)gρ tan θ1 dx +O(dx2). (1.35)

Writing T (x + dx) ≈ T (x) + T ′(x) dx, and using tan θ1 = dy/dx ≡ y′, we can
simplify eq. (1.35) to (neglecting second-order terms in dx)

T ′ = gρy′. (1.36)

Therefore,
T = gρy + c1, (1.37)

where c1 is a constant of integration.

Second step: Let’s see what we can extract from the first equation in eqs.
(1.34). Using

cos θ1 =
1√

1 + (y′(x))2
, and cos θ2 =

1√
1 + (y′(x + dx))2

, (1.38)

and expanding things to first order in dx, the first of eqs. (1.34) becomes

T + T ′dx√
1 + (y′ + y′′dx)2

=
T√

1 + y′2
. (1.39)

All of the functions here are evaluated at x, which we won’t bother writing.
Expanding the first square root gives (to first order in dx)

T + T ′dx√
1 + y′2

(
1− y′y′′dx

1 + y′2

)
=

T√
1 + y′2

. (1.40)
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To first order in dx this yields

T ′

T
=

y′y′′

1 + y′2
. (1.41)

Integrating both sides gives

ln T + c2 =
1
2

ln(1 + y′2), (1.42)

where c2 is a constant of integration. Exponentiating then gives

c2
3T

2 = 1 + y′2, (1.43)

where c3 ≡ ec2 .

Third step: We will now combine eq. (1.43) with eq. (1.37) to solve for y(x).
Eliminating T gives c2

3(gρy+c1)2 = 1+y′2. We can rewrite this is the somewhat
nicer form,

1 + y′2 = α2(y + h)2, (1.44)

where α ≡ c3gρ, and h = c1/gρ. At this point we can cleverly guess (motivated
by the fact that 1 + sinh2 z = cosh2 z) that the solution for y is given by

y(x) + h =
1
α

cosh α(x + a). (1.45)

Or, we can separate variables to obtain

dx =
dy√

α2(y + h)2 − 1
, (1.46)

and then use the fact that the integral of 1/
√

z2 − 1 is cosh−1 z, to obtain the
same result.
The shape of the chain is therefore a hyperbolic cosine function. The constant
h isn’t too important, because it simply depends on where we pick the y = 0
height. Furthermore, we can eliminate the need for the constant a if we pick
x = 0 to be where the lowest point of the chain is (or where it would be, in the
case where the slope is always nonzero). In this case, using eq. (1.45), we see
that y′(0) = 0 implies a = 0, as desired. We then have (ignoring the constant
h) the nice simple result,

y(x) =
1
α

cosh(αx). (1.47)

(b) The constant α can be determined from the locations of the endpoints and the
length of the chain. As stated in the problem, the position of the chain may be
described by giving (1) the horizontal distance d between the two endpoints, (2)
the vertical distance λ between the two endpoints, and (3) the length ` of the
chain, as shown in Fig. 1.45. Note that it is not obvious what the horizontal

d

λ

l

d-x-x x = 00 0

Figure 1.45

distances between the ends and the minimum point (which we have chosen as the
x = 0 point) are. If λ = 0, then these distances are simply d/2. But otherwise,
they are not so clear.
If we let the left endpoint be located at x = −x0, then the right endpoint is
located at x = d−x0. We now have two unknowns, x0 and α. Our two conditions
are9

y(d− x0)− y(−x0) = λ, (1.48)

9We will take the right end to be higher than the left end, without loss of generality.
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along with the condition that the length equals `, which takes the form (using
eq. (1.47))

` =
∫ d−x0

−x0

√
1 + y′2 dx

=
1
α

sinh(αx)
∣∣∣
d−x0

−x0

, (1.49)

where we have used (d/dz) cosh z = sinh z, and 1 + sinh2 z = cosh2 z. Writing
out eqs. (1.48) and (1.49) explicitly, we have

cosh
(
α(d− x0)

)− cosh(−αx0) = αλ,

sinh
(
α(d− x0)

)− sinh(−αx0) = α`. (1.50)

If we take the difference of the squares of these two equations, and use the
hyperbolic identities cosh2 x − sinh2 x = 1 and cosh x cosh y − sinhx sinh y =
cosh(x− y), we obtain

2− 2 cosh(αd) = α2(λ2 − `2). (1.51)

This is the desired equation that determines α. Given d, λ, and `, we can
numerically solve for α. Using a “half-angle” formula, you can show that eq.
(1.51) may also be written as

2 sinh(αd/2) = α
√

`2 − λ2. (1.52)

Remark: Let’s check a couple limits. If λ = 0 and ` = d (that is, the chain forms

a horizontal straight line), then eq. (1.52) becomes 2 sinh(αd/2) = αd. The solution

to this is α = 0, which does indeed correspond to a horizontal straight line, because

for small α, eq. (1.47) behaves like αx2/2 (up to an additive constant), which varies

slowly with x for small α. Another limit is where ` is much larger than both d and λ.

In this case, eq. (1.52) becomes 2 sinh(αd/2) ≈ α`. The solution to this is a very large

α, which corresponds to a “droopy” chain, because eq. (1.47) varies rapidly with x for

large α. ♣
10. Hanging gently

We must first find the mass of the chain by calculating its length. Then we must
determine the slope of the chain at the supports, so we can find the components of
the force there.
Using the given information, y(x) = (1/α) cosh(αx), the slope of the chain as a
function of x is

y′ =
d

dx

(
1
α

cosh(αx)
)

= sinh(αx). (1.53)

The total length is therefore (using 1 + sinh2 z = cosh2 z)

` =
∫ d

−d

√
1 + y′2 dx

=
∫ d

−d

cosh(αx)

=
2
α

sinh(αd). (1.54)
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The weight of the rope is W = ρ`g, where ρ is the mass per unit length. Each
support applies a vertical force of W/2. This must equal F sin θ, where F is the
total force at each support, and θ is the angle it makes with the horizontal. Since
tan θ = y′(d) = sinh(αd), we see from Fig. 1.46 that sin θ = tanh(αd). Therefore,

θ

1

F

chain

sinh(αx)
cosh(αx)

Figure 1.46

F =
1

sin θ

(
W

2

)

=
1

tanh(αd)

(
ρg sinh(αd)

α

)

=
ρg

α
cosh(αd). (1.55)

Taking the derivative of this (as a function of α), and setting the result equal to zero
to find the minimum, gives

tanh(αd) =
1
αd

. (1.56)

This must be solved numerically. The result is

αd ≈ 1.1997 ≡ η. (1.57)

We therefore have α = η/d, and so the shape of the chain that requires the minimum
F is

y(x) ≈ d

η
cosh

(ηx

d

)
. (1.58)

From eqs. (1.54) and (1.57), the length of the chain is

` =
2d

η
sinh(η) ≈ (2.52)d. (1.59)

To get an idea of what the chain looks like, we can calculate the ratio of the height,
h, to the width, 2d.

h

2d
=

y(d)− y(0)
2d

=
cosh(η)− 1

2η

≈ 0.338. (1.60)

We can also calculate the angle of the rope at the supports, using tan θ = sinh(αd).
This gives tan θ = sinh η, and so θ ≈ 56.5◦.

Remark: We can also ask what shape the chain should take in order to minimize the
horizontal or vertical component of F .

The vertical component, Fy, is simply half the weight, so we want the shortest possible chain,
namely a horizontal one (which requires an infinite F .) This corresponds to α = 0.

The horizontal component, Fx, equals F cos θ. From Fig. 1.46, we see that cos θ = 1/ cosh(αd).

Therefore, eq. (1.55) gives Fx = ρg/α. This goes to zero as α →∞, which corresponds to a

chain of infinite length, that is, a very “droopy” chain. ♣
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11. Mountain Climber

(a) We will take advantage of the fact that a cone is “flat”, in the sense that we can
make one out of a piece of paper, without crumpling the paper.
Cut the cone along a straight line emanating from the peak and passing through
the knot of the lasso, and roll the cone flat onto a plane. Call the resulting figure,
which is a sector of a circle, S (see Fig. 1.47). If the cone is very sharp, then S P P

β

Figure 1.47

will look like a thin “pie piece”. If the cone is very wide, with a shallow slope,
then S will look like a pie with a piece taken out of it.
Points on the straight-line boundaries of the sector S are identified with each
other. Let P be the location of the lasso’s knot. Then P appears on each
straight-line boundary, at equal distances from the tip of S. Let β be the angle
of the sector S.
The key to this problem is to realize that the path of the lasso’s loop must be
a straight line on S, as shown by the dotted line in Fig. 1.47. (The rope will
take the shortest distance between two points because there is no friction. And
rolling the cone onto a plane does not change distances.) A straight line between
the two identified points P is possible if and only if the sector S is smaller than
a semicircle. The condition for a climbable mountain is therefore β < 180◦.
What is this condition, in terms of the angle of the peak, α? Let C denote a
cross-sectional circle of the mountain, a distance d (measured along the cone)
from the top.10 A semicircular S implies that the circumference of C equals πd.
This then implies that the radius of C equals d/2. Therefore,

sin(α/2) <
d/2
d

=
1
2

=⇒ α < 60◦. (1.61)

This is the condition under which the mountain is climbable. In short, having
α < 60◦ guarantees that there is a loop around the cone with shorter length
than the distance straight to the peak and back.

Remark: When viewed from the side, the rope will appear perpendicular to the side

of the mountain at the point opposite the lasso’s knot. A common mistake is to assume

that this implies that the climbable condition is α < 90◦. This is not the case, because

the loop does not lie in a plane. Lying in a plane, after all, would imply an elliptical

loop. But the loop must certainly have a kink in it where the knot is, because there

must exist a vertical component to the tension there, to hold the climber up. If we

had posed the problem with a planar, triangular mountain, then the condition would

have been α < 90◦.

(b) Use the same strategy as in part (a). Roll the cone onto a plane. If the mountain
is very steep, then the climber’s position can fall by means of the loop growing
larger. If the mountain has a shallow slope, the climber’s position can fall by
means of the loop growing smaller. The only situation in which the climber will
not fall is the one where the change in position of the knot along the mountain
is exactly compensated by the change in length of the loop.
In terms of the sector S in a plane, this condition requires that if we move P a
distance ` up (or down) along the mountain, the distance between the identified
points P must decrease (or increase) by `. In Fig. 1.47, we must therefore have
an equilateral triangle, so β = 60◦.

10We are considering such a circle for geometrical convenience. It is not the path of the lasso; see
the remark below.
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What peak-angle α does this correspond to? As in part (a), let C be a cross-
sectional circle of the mountain, a distance d (measured along the cone) from
the top. Then β = 60◦ implies that the circumference of C equals (π/3)d. This
then implies that the radius of C equals d/6. Therefore,

sin(α/2) =
d/6
d

=
1
6

=⇒ α ≈ 19◦. (1.62)

This is the condition under which the mountain is climbable. We see that there
is exactly one angle for which the climber can climb up along the mountain. The
cheap lasso is therefore much more useful than the fancy deluxe lasso (assuming,
of course, that you want to use it for climbing mountains, and not, say, for
rounding up cattle).

Remark: Another way to see the β = 60◦ result is to note that the three directions
of rope emanating from the knot must all have the same tension, because the deluxe
lasso is one continuous piece of rope. They must therefore have 120◦ angles between
themselves (to provide zero net force on the massless knot). This implies that β = 60◦

in Fig. 1.47.

Further remarks: For each type of lasso, we can also ask the question: For what
angles can the mountain be climbed if the lasso is looped N times around the top of
the mountain? The solution here is similar to that above.

For the “cheap” lasso of part (a), roll the cone N times onto a plane, as shown in
Fig. 1.48 for N = 4. The resulting figure, SN , is a sector of a circle divided into NP P

N = 4

Figure 1.48

equal sectors, each representing a copy of the cone. As above, SN must be smaller
than a semicircle. The circumference of the circle C (defined above) must therefore be
less than πd/N . Hence, the radius of C must be less than d/2N . Thus,

sin(α/2) <
d/2N

d
=

1

2N
=⇒ α < 2 sin−1

(
1

2N

)
. (1.63)

For the “deluxe” lasso of part (b), again roll the cone N times onto a plane. From the
reasoning in part (b), we must have Nβ = 60◦. The circumference of C must therefore
be πd/3N , and so its radius must be d/6N . Therefore,

sin(α/2) =
d/6N

d
=

1

6N
=⇒ α = 2 sin−1

(
1

6N

)
. (1.64)

12. Equality of torques

The proof by induction is as follows. Assume that we have shown that a force F
applied at a distance d is equivalent to a force kF applied at a distance d/k, for all
integers k up to n− 1. We now want to show that the statement holds for k = n.
Consider the situation in Fig. 1.49. Forces F are applied at the ends of a stick, and

F F

F

.
.
.

Figure 1.49

forces 2F/(n − 1) are applied at the j`/n marks (for 1 ≤ j ≤ n − 1). The stick will
not rotate (by symmetry), and it will not translate (because the net force is zero).
Consider the stick to have a pivot at the left end. Replacing the interior forces by
their equivalent ones at the `/n mark (see Fig. 1.49) gives a total force there equal to

2F

n− 1

(
1 + 2 + 3 + · · ·+ (n− 1)

)
=

2F

n− 1

(
n(n− 1)

2

)
= nF. (1.65)

We therefore see that a force F applied at a distance ` is equivalent to a force nF
applied at a distance `/n, as was to be shown.
We can now show that Claim 1.1 holds, for arbitrary distances a and b (see Fig. 1.50).

F

a b

2

F1

F3 

Figure 1.50



1.5. SOLUTIONS I-27

Consider the stick to be pivoted at its left end, and let ε be a tiny distance (small
compared to a). Then a force F3 at a distance a is equivalent to a force F3(a/ε) at a
distance ε.11 But a force F3(a/ε) at a distance ε is equivalent to a force F3(a/ε)(ε/(a+
b)) = F3a/(a + b) at a distance (a + b). This equivalent force at the distance (a + b)
must cancel the force F2 there, because the stick is motionless. Therefore, we have
F3a/(a + b) = F2, which proves the claim.

13. Find the force
In Fig. 1.51, let the supports at the ends exert forces F1 and F2, and let the support

F1 F2F

a b

Mg

Figure 1.51
in the interior exert a force F . Then

F1 + F2 + F = Mg. (1.66)

Balancing torques around the left and right ends gives, respectively,

Fa + F2(a + b) = Mg
a + b

2
,

F b + F1(a + b) = Mg
a + b

2
, (1.67)

where we have used the fact that the stick can be treated as a point mass at its
center. Note that the equation for balancing the torques around the center of mass is
redundant; it is obtained by taking the difference of the two previous equations and
then dividing by 2. And balancing torques around the middle pivot also takes the
form of a linear combination of these equations, as you can show.
It appears as though we have three equations and three unknowns, but we really have
only two equations, because the sum of eqs. (1.67) gives eq. (1.66). Therefore, since
we have two equations and three unknowns, the system is underdetermined. Solving
eqs. (1.67) for F1 and F2 in terms of F , we see that any forces of the form

(F1, F, F2) =
(

Mg

2
− Fb

a + b
, F,

Mg

2
− Fa

a + b

)
(1.68)

are possible. In retrospect, it makes sense that the forces are not determined. By
changing the height of the new support an infinitesimal distance, we can make F be
anything from 0 up to Mg(a+b)/2b, which is when the stick comes off the left support
(assuming b ≥ a).

14. Leaning sticks
Let Ml be the mass of the left stick, and let Mr be the mass of the right stick. Then
Ml/Mr = tan θ (see Fig. 1.52). Let N and Ff be the normal and friction forces

θ

N Ff

Figure 1.52between the sticks. Ff has a maximum value of µN . Balancing the torques on the
left stick (around the contact point with the ground) gives

N =
Mlg

2
sin θ. (1.69)

Balancing the torques on the right stick (around the contact point with the ground)
gives

Ff =
Mrg

2
cos θ. (1.70)

11Technically, we can use the reasoning in the previous paragraph to say this only if a/ε is an
integer, but since a/ε is very large, we can simply pick the closest integer to it, and there will be
negligible error.
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The condition Ff ≤ µN becomes

Mr cos θ ≤ µMl sin θ. (1.71)

Using Ml/Mr = tan θ, this becomes

tan2 θ ≥ 1
µ

. (1.72)

This is the condition for the sticks not to fall. This answer checks in the two extremes:
In the limit µ → 0, we see that θ must be very close to π/2, which makes sense. And
in the limit µ →∞ (that is, very sticky sticks), we see that θ can be very small, which
also makes sense.

15. Supporting a ladder
Let F be the desired force. Note that F must be directed along the stick, because
otherwise there would be a net torque on the (massless) stick relative to the pivot at
its right end. This would contradict the fact that it is at rest.
Look at torques on the ladder around the pivot at its bottom. The gravitational force
provides a torque of Mg(L/2) cos θ, tending to turn it clockwise; and the force F
from the stick provides a torque of F (`/ tan θ), tending to turn it counterclockwise.
Equating these two torques gives

F =
MgL

2`
sin θ. (1.73)

Remarks: F goes to zero as θ → 0, as it should.12 And F increases to MgL/2`, as θ → π/2,
which isn’t so obvious (the required torque from the stick is very small, but its lever arm is
also very small). However, in the special case where the ladder is exactly vertical, no force
is required. You can see that our calculations above are not valid in this case, because we
divided by cos θ, which is zero when θ = π/2.

The normal force at the pivot of the stick (which equals the vertical component of F , because

the stick is massless) is equal to MgL sin θ cos θ/2`. This has a maximum value of MgL/4`

at θ = π/4. ♣
16. Stick on a circle

Let N be the normal force between the stick and the circle, and let Ff be the friction
force between the ground and the circle (see Fig. 1.53). Then we immediately seeR

Ff

Ff

N 

θ/2

θ/2

Figure 1.53

that the friction force between the stick and the circle is also Ff , because the torques
from the two friction forces on the circle must cancel.
Looking at torques on the stick around the point of contact with the ground, we
have Mg cos θ(L/2) = NL, where M is the mass of the stick and L is its length.
Therefore, N = (Mg/2) cos θ. Balancing the horizontal forces on the circle then gives
N sin θ = Ff + Ff cos θ. So we have

Ff =
N sin θ

1 + cos θ
=

Mg sin θ cos θ

2(1 + cos θ)
. (1.74)

But M = ρL, and from Fig. 1.53 we have L = R/ tan(θ/2). Using the identity
tan(θ/2) = sin θ/(1 + cos θ), we finally obtain

Ff =
1
2
ρgR cos θ. (1.75)

12For θ → 0, we would need to lengthen the ladder with a massless extension, because the stick
would have to be very far to the right to remain perpendicular to the ladder.



1.5. SOLUTIONS I-29

In the limit θ → π/2, Ff approaches zero, which makes sense. In the limit θ → 0
(which corresponds to a very long stick), the friction force approaches ρgR/2, which
isn’t so obvious.

17. Leaning sticks and circles
Let Si be the ith stick, and let Ci be the ith circle. The normal forces Ci feels from Si

and Si+1 are equal in magnitude, because these two forces provide the only horizontal
forces on the frictionless circle, so they must cancel. Let Ni be this normal force.
Look at the torques on Si+1, relative to the hinge on the ground. The torques come
from Ni, Ni+1, and the weight of Si+1. From Fig. 1.54, we see that Ni acts at

R

R

R______
N

N

C

R tan θ/2

θ/2

θ/2
θ/2

θ/2

tan θ/2

i

Si

i

i+1

Figure 1.54

a point which is a distance R tan(θ/2) away from the hinge. Since the stick has a
length R/ tan(θ/2), this point is a fraction tan2(θ/2) up along the stick. Therefore,
balancing the torques on Si+1 gives

1
2
Mg cos θ + Ni tan2 θ

2
= Ni+1. (1.76)

N0 is by definition 0, so we have N1 = (Mg/2) cos θ (as in the previous problem). If
we successively use eq. (1.76), we see that N2 equals (Mg/2) cos θ

(
1 + tan2(θ/2)

)
,

and N3 equals (Mg/2) cos θ
(
1 + tan2(θ/2) + tan4(θ/2)

)
, and so on. In general,

Ni =
Mg cos θ

2

(
1 + tan2 θ

2
+ tan4 θ

2
+ · · ·+ tan2(i−1) θ

2

)
. (1.77)

In the limit i →∞, we may write this infinite geometric sum in closed form as

lim
i→∞

Ni ≡ N∞ =
Mg cos θ

2

(
1

1− tan2(θ/2)

)
. (1.78)

Note that this is the solution to eq. (1.76), with Ni = Ni+1. So if a limit exists, it
must equal this. Using M = ρL = ρR/ tan(θ/2), we can rewrite N∞ as

N∞ =
ρRg cos θ

2 tan(θ/2)

(
1

1− tan2(θ/2)

)
. (1.79)

The identity cos θ = cos2(θ/2)− sin2(θ/2) may then be used to write this as

N∞ =
ρRg cos3(θ/2)

2 sin(θ/2)
. (1.80)

Remarks: N∞ goes to infinity for θ → 0, which makes sense, because the sticks are very
long. All of the Ni are essentially equal to half the weight of a stick (in order to cancel the
torque from the weight relative to the pivot). For θ → π/2, we see from eq. (1.80) that N∞
approaches ρRg/4, which is not at all obvious; the Ni start off at N1 = (Mg/2) cos θ ≈ 0,
but gradually increase to ρRg/4, which is a quarter of the weight of a stick.

Note that the horizontal force that must be applied to the last circle far to the right is

N∞ sin θ = ρRg cos4(θ/2). This ranges from ρRg for θ → 0, to ρRg/4 for θ → π/2. ♣
18. Balancing the stick

Let the stick go off to infinity in the positive x direction, and let it be cut at x = x0.
Then the pivot point is located at x = x0 + ` (see Fig. 1.55). Let the density be ρ(x). x0 + lx0

Figure 1.55
The condition that the total gravitational torque relative to x0 + ` equal zero is

τ =
∫ ∞

x0

ρ(x)
(
x− (x0 + `)

)
g dx = 0. (1.81)
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We want this to equal zero for all x0, so the derivative of τ with respect to x0 must
be zero. τ depends on x0 through both the limits of integration and the integrand.
In taking the derivative, the former dependence requires finding the value of the
integrand at the limits, while the latter dependence requires taking the derivative of
the integrand with respect to x0, and then integrating. We obtain, using the fact that
ρ(∞) = 0,

0 =
dτ

dx0
= `ρ(x0)−

∫ ∞

x0

ρ(x) dx. (1.82)

Taking the derivative of this equation with respect to x0 gives

`ρ′(x0) = −ρ(x0). (1.83)

The solution to this is (rewriting the arbitrary x0 as x)

ρ(x) = Ae−x/`. (1.84)

We therefore see that the density decreases exponentially with x. The smaller ` is,
the quicker it falls off. Note that the density at the pivot is 1/e times the density at
the left end. And you can show that 1− 1/e ≈ 63 % of the mass is contained between
the left end and the pivot.

19. The spool

(a) Let Ff be the friction force the ground provides. Balancing the horizontal forces
on the spool gives (see Fig. 1.56)

Ff

T
R

r

θ

Figure 1.56

T cos θ = Ff . (1.85)

Balancing torques around the center of the spool gives

Tr = FfR. (1.86)

These two equations imply
cos θ =

r

R
. (1.87)

The niceness of this result suggests that there is a quicker way to obtain it. And
indeed, we see from Fig. 1.57 that cos θ = r/R is the angle that causes the line

T

R

r
θ

θ

θ

Figure 1.57

of the tension to pass through the contact point on the ground. Since gravity
and friction provide no torque around this point, the total torque around it is
therefore zero, and the spool remains at rest.

(b) The normal force from the ground is

N = Mg − T sin θ. (1.88)

Using eq. (1.85), the statement Ff ≤ µN becomes T cos θ ≤ µ(Mg − T sin θ).
Hence,

T ≤ µMg

cos θ + µ sin θ
, (1.89)

where θ is given in eq. (1.87).

(c) The maximum value of T is given in (1.89). This depends on θ, which in turn
depends on r. We want to find the r which minimizes this maximum T .
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Taking the derivative with respect to θ, we find that the θ that maximizes the
denominator in eq. (1.89) is given by tan θ0 = µ. You can then show that the
value of T for this θ0 is

T0 =
µMg√
1 + µ2

= Mg sin θ0. (1.90)

To find the corresponding r, we can use eq. (1.87) to write tan θ =
√

R2 − r2/r.
The relation tan θ0 = µ then yields

r0 =
R√

1 + µ2
. (1.91)

This is the r that yields the smallest upper bound on T . In the limit µ = 0, we
have θ0 = 0, T0 = 0, and r0 = R. And in the limit µ = ∞, we have θ0 = π/2,
T0 = Mg, and r0 = 0.
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