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In the previous chapter, we dealt only with abstract particles flying through space
and time. We didn’t concern ourselves with the nature of the particles, how they got
to be moving the way they were moving, or what would happen if various particles
interacted. In this chapter we will deal with these issues. That is, we will discuss
masses, forces, energy, momentum, etc.

The two main results of this chapter are that the momentum and energy of a
particle are given by

p = γmv, and E = γmc2, (11.1)

where γ ≡ 1/
√

1− v2/c2, and m is the mass of the particle.1 When v ¿ c, the
expression for p reduces to p = mv, as it should for a non-relativistic particle.
When v = 0, the expression for E reduces to the well-known E = mc2.

11.1 Energy and momentum

In this section, we’ll give some justification for eqs. (11.1). The reasoning here
should convince you of their truth. An alternative, and perhaps more convincing,
motivation comes from the 4-vector formalism in Chapter 12. In the end, however,
the justification for eqs. (11.1) is obtained through experiments. Every day, ex-
periments in high-energy accelerators are verifying the truth of these expressions.
(More precisely, they are verifying that these energy and momenta are conserved in
any type of collision.) We therefore conclude, with reasonable certainty, that eqs.
(11.1) are the correct expressions for energy and momentum.

But actual experiments aside, let’s consider a few thought-experiments that mo-
tivate the above expressions.

1People use the word “mass” in different ways in relativity. They talk about “rest mass” and
“relativistic mass”. These terms, however, are misleading. There is only one thing that can reason-
ably be called “mass” in relativity. It is the same thing that we call “mass” in Newtonian physics,
and it is what some people would call “rest mass”, although the qualifier “rest” is redundant. See
Section 11.8 for a discussion of this issue.
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11.1.1 Momentum

Consider the following system. In the lab frame, identical particles A and B move
as shown in Fig. 11.1. They move with equal and opposite small speeds in the
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Figure 11.1

x-direction, and with equal and opposite large speeds in the y-direction. Their
paths are arranged so that they glance off each other and reverse their motion in
the x-direction.

For clarity, imagine a series of equally spaced vertical lines for reference. Assume
that both A and B have identical clocks that tick every time they cross one of the
lines.

Consider now the reference frame that moves in the y-direction, with the same
vy as A. In this frame, the situation looks like Fig. 11.2. The collision simply
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changes the sign of the x-velocities of the particles. Therefore, the x-momenta of
the two particles must be the same.2

However, the x-speeds of the two particles are not the same in this frame. A
is essentially at rest in this frame, and B is moving with a very large speed, v.
Therefore, B’s clock is running slower than A’s, by a factor essentially equal to
1/γ ≡ √

1− v2/c2. And since B’s clock ticks once for every vertical line it crosses
(this fact is independent of the frame), B must therefore be moving slower in the
x-direction, by a factor of 1/γ.

Therefore, the Newtonian expression, px = mvx, cannot be the correct one for
momentum, because B’s momentum would be smaller than A’s (by a factor of 1/γ),
due to their different vx’s. But the γ factor in

px = γmvx ≡ mvx√
1− v2/c2

(11.2)

precisely takes care of this problem, because γ ≈ 1 for A, and γ = 1/
√

1− v2/c2 for
B, which precisely cancels the effect of B’s smaller vx.

To obtain the three-dimensional form for p, we now note that the vector p must
point in the same direction as the vector v points.3 Therefore, eq. (11.2) implies
that the momentum vector must be

p = γmv ≡ mv√
1− v2/c2

, (11.3)

in agreement with eq. (11.1). Note that that all the components of p have the same
denominator, which involves the whole speed, v2 = v2

x + v2
y + v2

z . The denominator
of, say, px, is not

√
1− v2

x/c2.
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Figure 11.3

Remark: The above setup is only one specific type of collision, among an infinite
number of possible types of collisions. What we’ve shown with this setup is that the only

2This is true because if, say, A’s px were larger than B’s px, then the total px would point to
the right before the collision, and to the left after the collision. Since momentum is something we
want to be conserved, this cannot be the case.

3This is true because any other direction for p would violate rotation invariance. If someone
claims that p points in the direction shown in Fig. 11.3, then he would be hard-pressed to explain
why it doesn’t instead point along the direction p′ shown. In short, the direction of v is the only
preferred direction in space.
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possible vector of the form f(v)mv (where f is some function) that has any chance at being
conserved in all collisions is γmv (or some constant multiple of this). We haven’t proved
that it actually is conserved in all collisions. This is where the gathering of data from
experiments comes in. But we’ve shown above that it would be a waste of time to consider,
for example, the vector γ5mv. ♣

11.1.2 Energy

Having given some justification for the momentum expression, p = γmv, let us now
try to justify the energy expression,

E = γmc2. (11.4)

More precisely, we will show that γmc2 is conserved in interactions (or at least in
the specific interaction below). There are various ways to do this. The best way,
perhaps, is to use the 4-vector formalism in Chapter 12. But we’ll study one simple
setup here that should do the job.

Consider the following system. Two identical particles of mass m head toward
each other, both with speed u, as shown in Fig. 11.4. They stick together and form
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a particle of mass M . M is at rest, due to the symmetry of the situation. At the
moment we cannot assume anything about the size of M . We will find below that
it does not equal the naive value of 2m.

This is a fairly uninteresting setup (conservation of momentum gives 0 = 0), but
now consider the less trivial view from a frame moving to the left at speed u. This
situation is shown in Fig. 11.5. The right mass is at rest, M moves to the right at
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speed u, and the left mass moves to the right at speed v = 2u/(1 + u2), from the
velocity addition formula.4 Note that the γ-factor associated with this speed v is

γv ≡ 1√
1− v2

=
1√

1−
(

2u
1+u2

)2
=

1 + u2

1− u2
. (11.5)

Conservation of momentum in this collision then gives

γvmv + 0 = γuMu

=⇒ m

(
1 + u2

1− u2

) (
2u

1 + u2

)
=

Mu√
1− u2

=⇒ M =
2m√
1− u2

. (11.6)

Conservation of momentum therefore tells us that M does not equal 2m. But if
u is very small, then M is approximately equal to 2m, as we know from everyday
experience.

Using the value of M from eq. (11.6), let’s now check that our candidate for
energy, E = γmc2, is conserved in this collision. There is no freedom left in any of

4We’re going to set c = 1 for a little while here, because this calculation would get a bit messy
if we kept in the c’s. We’ll discuss the issue of setting c = 1 in more detail later in this section.
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the parameters, so γmc2 is either conserved or it isn’t. In the original frame where
M is at rest, E is conserved if

γ0Mc2 = 2(γumc2) ⇐⇒ 2m√
1− u2

= 2
(

1√
1− u2

)
m, (11.7)

which is indeed true.
Let’s also check that E is conserved in the frame where the right mass is at rest.

E is conserved if

γvmc2 + γ0mc2 = γuMc2, or(
1 + u2

1− u2

)
m + m =

M√
1− u2

, or

2m

1− u2
=

(
2m√
1− u2

)
1√

1− u2
, (11.8)

which is indeed true. So E is also conserved in this frame.
Hopefully at this point you’re convinced that γmc2 is a believable expression for

the energy of a particle. But just as in the case of momentum, we haven’t proved
that γmc2 actually is conserved in all collisions. This is the duty of experiments.
But we’ve shown that it would be a waste of time to consider, for example, the
quantity γ4mc2.

One thing that we certainly need to check is that if E and p are conserved in
one reference frame, then they are conserved in any other. We’ll demonstrate this
in Section 11.2. A conservation law shouldn’t depend on what frame you’re in, after
all.

Remarks:

1. To be precise, we should say that technically we’re not trying to justify eqs. (11.1)
here. These two equations by themselves are devoid of any meaning. All they do is
define the letters p and E. Our goal is to make a meaningful physical statement, not
just a definition.
The meaningful physical statement we want to make is that the quantities γmv and
γmc2 are conserved in an interaction among particles (and this is what we tried to
justify above). This fact then makes these quantities worthy of special attention,
because conserved quantities are very helpful in understanding what is happening
in a given physical situation. And anything worthy of special attention certainly
deserves a label, so we may then attach the names “momentum” and “energy” to
γmv and γmc2. Any other names would work just as well, of course, but we choose
these because in the limit of small speeds, γmv and γmc2 reduce (as we will soon
show) to some other nicely conserved quantities, which someone already tagged with
the labels “momentum” and “energy” long ago.

2. As mentioned above, the fact of the matter is that we can’t prove that γmv and γmc2

are conserved. In Newtonian physics, conservation of p ≡ mv is basically postulated
by Newton’s third law, and we’re not going to be able to do any better than that
here. All we can hope to do as physicists is provide some motivation for considering
γmv and γmc2, show that it is consistent for γmv and γmc2 to be conserved during
an interaction, and gather a large amount of experimental evidence, all of which is
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consistent with γmv and γmc2 being conserved. That’s how physics works. You can’t
prove anything. So you learn to settle for the things you can’t disprove.

Consider, when seeking gestalts,
The theories that physics exalts.
It’s not that they’re known
To be written in stone.
It’s just that we can’t say they’re false.

As far as the experimental evidence goes, suffice it to say that high-energy accelerators,
cosmological observations, and many other forums are continually verifying everything
that we think is true about relativistic dynamics. If the theory is not correct, then we
know that it must be the limiting theory of a more complete one (just as Newtonian
physics is a limiting theory of relativity). But all this experimental induction has to
count for something. . .

“To three, five, and seven, assign
A name,” the prof said, “We’ll define.”
But he botched the instruction
With woeful induction
And told us the next prime was nine.

3. Conservation of energy in relativistic mechanics is actually a much simpler concept
than it is in nonrelativistic mechanics, because E = γm is conserved, period. We
don’t have to worry about the generation of heat, which ruins conservation of the
nonrelativistic E = mv2/2. The heat is simply built into the energy. In the example
above, the two m’s collide and generate heat in the resulting mass M . This heat
shows up as an increase in mass, which makes M larger than 2m. The energy that
corresponds to the increase in mass is due to the initial kinetic energy of the two m’s.

4. Problem 1 gives an alternate derivation of the energy and momentum expressions
in eq. (11.1). This derivation uses additional facts, namely that the energy and
momentum of a photon are given by E = hν and p = hν/c, where ν is the frequency
of the light wave, and h is Planck’s constant. ♣

Any multiple of γmc2 is also conserved, of course. Why did we pick γmc2 to
label as “E” instead of, say, 5γmc3? Consider the approximate form γmc2 takes in
the Newtonian limit, that is, in the limit v ¿ c. We have, using the Taylor series
expansion for (1− x)−1/2,

E ≡ γmc2 =
mc2

√
1− v2/c2

= mc2

(
1 +

v2

2c2
+

3v4

8c4
+ · · ·

)

= mc2 +
1
2
mv2 + · · · . (11.9)

The dots represent higher-order terms in v2/c2, which may be neglected if v ¿ c. In
an elastic collision in Newtonian physics, no heat is generated, so mass is conserved.
That is, the quantity mc2 has a fixed value. We therefore see that conservation of
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E ≡ γmc2 reduces to the familiar conservation of Newtonian kinetic energy, mv2/2,
for elastic collisions in the limit of slow speeds.

Likewise, we picked p ≡ γmv, instead of, say, 6γmc4v, because the former
reduces to the familiar Newtonian momentum, mv, in the limit of slow speeds.

Whether abstract, profound, or just mystic,
Or boring, or somewhat simplistic,
A theory must lead
To results that we need
In limits, nonrelativistic.

Whenever we use the term “energy”, we will mean the total energy, γmc2. If
we use the term “kinetic energy”, we will mean a particle’s excess energy over its
energy when it is motionless, that is, γmc2 −mc2. Note that kinetic energy is not
necessarily conserved in a collision, because mass is not necessarily conserved, as
we saw in eq. (11.6) in the above scenario, where M = 2m/

√
1− u2. In the CM

frame, there was kinetic energy before the collision, but none after. Kinetic energy
is a rather artificial concept in relativity. You virtually always want to use the total
energy, γmc2, when solving a problem.

Note the following extremely important relation,

E2 − |p|2c2 = γ2m2c4 − γ2m2|v|2c2

= γ2m2c4

(
1− v2

c2

)

= m2c4. (11.10)

This is a primary ingredient in solving relativistic collision problems, as we will soon
see. It replaces the KE = p2/2m relation between kinetic energy and momentum
in Newtonian physics. It can be derived in more profound ways, as we will see in
Chapter 12. Let’s put it in a box, since it’s so important,

E2 = p2c2 + m2c4 . (11.11)

In the case where m = 0 (as with photons), eq. (11.11) says that E = pc. This
is the key equation for massless objects. For photons, the two equations, p = γmv
and E = γmc2, don’t tell us much, because m = 0 and γ = ∞, so their product is
undetermined. But E2 − |p|2c2 = m2c4 still holds, and we conclude that E = pc.

Note that any massless particle must have γ = ∞. That is, it must travel at
speed c. If this weren’t the case, then E = γmc2 would equal zero, in which case
the particle isn’t much of a particle. We’d have a hard time observing something
with no energy.

Another nice relation, which holds for particles of any mass, is

p
E

=
v
c2

. (11.12)

Given p and E, this is definitely the quickest way to get v.
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Setting c = 1

For the remainder of our treatment of relativity, we will invariably work in units
where c = 1. For example, instead of one meter being the unit of distance, we can
make 3 · 108 meters equal to one unit. Or, we can keep the meter as is, and make
1/(3 · 108) seconds the unit of time. In such units, our various expressions become

p = γmv, E = γm, E2 = p2 + m2,
p
E

= v. (11.13)

Said in another way, you can simply ignore all the c’s in your calculations (which
will generally save you a lot of strife), and then put them back into your final answer
to make the units correct. For example, let’s say the goal of a certain problem is to
find the time of some event. If your answer comes out to be `, where ` is a given
length, then you know that the correct answer (in terms of the usual mks units)
has to be `/c, because this has units of time. In order for this procedure to work,
there must be only one way to put the c’s back in at the end. This is always the
case, because if there were two ways, then we would have ca = cb, for some numbers
a 6= b. But this is impossible, because c has units.

The general size of mc2

What is the general size of mc2? If we let m = 1 kg, then we have mc2 = (1 kg)(3 ·
108 m/s)2 ≈ 1017 J. How big is this? A typical household electric bill might around
$50 per month, or $600 per year. At about 10 cents per kilowatt-hour, this translates
to 6000 kilowatt-hours per year. Since there are 3600 seconds in an hour, this
converts to (6000)(103)(3600) ≈ 2 · 1010 watt-seconds. That is, 2 · 1010 Joules per
year. We therefore see that if one kilogram were converted completely into usable
energy, it would be enough to provide electricity to 1017/(2 · 1010), or 5 million,
homes for a year. That’s a lot.

In a nuclear reactor, only a small fraction of the mass energy is converted into
usable energy. Most of the mass remains in the final products, which doesn’t help
in lighting up your home. If a particle were to combine with its antiparticle, then
it would be possible for all of the mass energy to be converted into usable energy.
But we’re still a few years away from this.

However, even a small fraction of the very large quantity, E = mc2, can still be
large, as evidenced by the use of nuclear power and nuclear weapons. Any quantity
with a few factors of c is bound to change the face of the world.

11.2 Transformations of E and ~p

Consider the following one-dimensional situation, where all the motion is along the
x-axis. A particle has energy E′ and momentum p′ in frame S′. Frame S′ moves at
speed v with respect to frame S, in the positive x-direction (see Fig. 11.6). What

x x'

S S'

u'

v

Figure 11.6are E and p in S?
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Let u′ be the particle’s speed in S′. From the velocity addition formula, the
particle’s speed in S is (dropping the factors of c)

u =
u′ + v

1 + u′v
. (11.14)

This is all we need to know, because a particle’s velocity determines its energy and
momentum. But we’ll need to go through a little algebra to make things look pretty.
The γ-factor associated with the speed u is

γu =
1√

1−
(

u′+v
1+u′v

)2
=

1 + u′v√
(1− u′2)(1− v2)

≡ γu′γv(1 + u′v). (11.15)

The energy and momentum in S′ are

E′ = γu′m, and p′ = γu′mu′, (11.16)

while the energy and momentum in S are, using eq. (11.15),

E = γum = γu′γv(1 + u′v)m,

p = γumu = γu′γv(1 + u′v)m
(

u′ + v

1 + u′v

)
= γu′γv(u′ + v)m. (11.17)

Using the E′ and p′ from eq. (11.16), we can rewrite E and p as (with γ ≡ γv)

E = γ(E′ + vp′),
p = γ(p′ + vE′). (11.18)

These are transformations for E and p between frames. If you want to put the
factors of c back in, then the vE′ term becomes vE′/c2. These equations are easy
to remember, because they look exactly like the Lorentz transformations for the
coordinates t and x in eq. (10.17). This is no coincidence, as we will see in Chapter
12.

Remark: We can perform a few checks on eqs. (11.18). If u′ = 0 (so that p′ = 0 and
E′ = m), then E = γm and p = γmv, as they should. Also, if u′ = −v (so that p′ = −γmv

and E′ = γm), then E = m and p = 0, as they should. ♣
Note that since the transformations in eq. (11.18) are linear, they also hold if E

and p represent the total energy and momentum of a collection of particles. That
is,

∑
E = γ

(∑
E′ + v

∑
p′

)
,

∑
p = γ

(∑
p′ + v

∑
E′

)
. (11.19)

Indeed, any (corresponding) linear combinations of the energies and momenta are
valid here, in place of the sums. For example, we can use the combinations (Eb

1 +
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3Ea
2 − 7Eb

5) and (pb
1 + 3pa

2 − 7pb
5) in eq. (11.18), where the subscripts indicate which

particle, and the superscripts indicate before or after a collision. You can verify this
by simply taking the appropriate linear combination of eqs. (11.18) for the various
particles. This consequence of linearity is a very important and useful result, as will
become clear in the remarks below.

You can use eq. (11.18) to show that

E2 − p2 = E′2 − p′2, (11.20)

just as we did to obtain the t2−x2 = t′2−x′2 result in eq. (10.37). The E’s and p’s
here can represent any (corresponding) linear combinations of the E’s and p’s of the
various particles, due to the linearity of eq. (11.18). For one particle, we already
know that eq. (11.20) is true, because both sides are equal to m2, from eq. (11.10).
For many particles, the invariant E2

total − p2
total is equal to the square of the total

energy in the CM frame (which reduces to m2 for one particle), because ptotal = 0
in the CM frame, by definition.

Remarks:

1. In the previous section, we said that we needed to show that if E and p are conserved
in one reference frame, then they are conserved in any other frame (because a con-
servation law shouldn’t depend on what frame you’re in). Eq. (11.18) quickly gives
us this result, because the E and p in one frame are linear functions of the E′ and p′

in another frame. If the total ∆E′ and ∆p′ in S′ are zero, then eq. (11.18) says that
the total ∆E and ∆p in S must also be zero. We have used the fact that ∆E is a
linear combination of the E’s, and that ∆p is a linear combination of the p’s, so eq.
(11.18) applies to these linear combinations.

2. Eq. (11.18) makes it clear that if you accept the fact that p = γmv is conserved in
all frames, then you must also accept the fact that E = γm is conserved in all frames
(and vice versa). This is true because the second of eqs. (11.18) says that if ∆p and
∆p′ are both zero, then ∆E′ must also be zero (again, we have used linearity). E and
p have no choice but to go hand in hand. ♣

Eq. (11.18) applies to the x-component of the momentum. How do the transverse
components, py and pz, transform? Just as with the y and z coordinates in the
Lorentz transformations, py and pz do not change between frames. The analysis in
Chapter 12 makes this obvious, so for now we’ll simply state that

py = p′y,
pz = p′z, (11.21)

if the relative velocity between the frames is in the x-direction. If you really want to
show explicitly that the transverse components do not change between frames, or if
you are worried that a nonzero speed in the y direction will mess up the relationship
between px and E that we calculated in eq. (11.18), then Exercise 4 is for you. But
it’s a bit tedious, so feel free to settle for the much cleaner reasoning in Chapter 12.
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11.3 Collisions and decays

The strategy for studying relativistic collisions is the same as that for studying
nonrelativistic ones. You simply have to write down all the conservation of energy
and momentum equations, and then solve for whatever variables you want to solve
for. The conservation principles are the same as they’ve always been. It’s just that
now the energy and momentum take the new forms in eq. (11.1).

In writing down the conservation of energy and momentum equations, it proves
extremely useful to put E and p together into one four-component vector,

P ≡ (E,p) ≡ (E, px, py, pz). (11.22)

This is called the energy-momentum 4-vector, or the 4-momentum, for short.5 Our
notation in this chapter will be to use an uppercase P to denote a 4-momentum
and a lowercase p or p to denote a spatial momentum. The components of a 4-
momentum are generally indexed from 0 to 3, so that P0 ≡ E, and (P1, P2, P3) ≡ p.
For one particle, we have

P = (γm, γmvx, γmvy, γmvz). (11.23)

The 4-momentum for a collection of particles simply consists of the total E and
total p of all the particles.

There are deep reasons for considering this four-component vector (as we will
see in Chapter 12), but for now we will view it as simply a matter of convenience. If
nothing else, it helps with the bookkeeping. Conservation of energy and momentum
in a collision reduce to the concise statement,

Pbefore = Pafter, (11.24)

where these are the total 4-momenta of all the particles.
If we define the inner product between two 4-momenta, A ≡ (A0, A1, A2, A3) and

B ≡ (B0, B1, B2, B3), to be

A ·B ≡ A0B0 −A1B1 −A2B2 −A3B3, (11.25)

then the relation E2 − p2 = m2 (which is true for one particle) may be concisely
written as

P 2 ≡ P · P = m2. (11.26)

In other words, the square of a particle’s 4-momentum equals the square of its mass.
This relation will prove to be very useful in collision problems. Note that it is
frame-independent, as we saw in eq. (11.20).

This inner product is different from the one we’re used to in three-dimensional
space. It has one positive sign and three negative signs, in contrast with the usual
three positive signs. But we are free to define it however we wish, and we did
indeed pick a good definition, because our inner product is invariant under Lorentz-
transformations, just as the usual 3-D inner product is invariant under rotations.6

5If we were keeping in the factors of c, then the first term would be E/c, although some people
instead multiply the p by c. Either convention is fine.

6For the inner product of a 4-momentum with itself (which could be any linear combination of
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Example (Relativistic billiards): A particle with mass m and energy E ap-
proaches an identical particle at rest. They collide (elastically) in such a way that
they both scatter at an angle θ relative to the incident direction (see Fig. 11.7). What

θ

θ

m

E

m

Figure 11.7

is θ in terms of E and m? What is θ in the relativistic and non-relativistic limits?

Solution: The first thing we should always do is write down the 4-momenta. The
4-momenta before the collision are

P1 = (E, p, 0, 0), P2 = (m, 0, 0, 0), (11.27)

where p =
√

E2 −m2. The 4-momenta after the collision are (primes now denote
“after”)

P ′1 = (E′, p′ cos θ, p′ sin θ, 0), P ′2 = (E′, p′ cos θ,−p′ sin θ, 0), (11.28)

where p′ =
√

E′2 −m2. Conservation of energy gives E′ = (E + m)/2, and con-
servation of px gives p′ cos θ = p/2. Therefore, the 4-momenta after the collision
are

P ′1,2 =
(

E + m

2
,

p

2
, ±p

2
tan θ, 0

)
. (11.29)

From eq. (11.26), the squares of these 4-momenta must be m2. Therefore,

m2 =
(

E + m

2

)2

−
(p

2

)2

(1 + tan2 θ)

=⇒ 4m2 = (E + m)2 − (E2 −m2)
cos2 θ

=⇒ cos2 θ =
E2 −m2

E2 + 2Em− 3m2
=

E + m

E + 3m
. (11.30)

The relativistic limit is E À m, which yields cos θ ≈ 1. Therefore, both particles
scatter almost directly forward.
The nonrelativistic limit is E ≈ m (it’s not E ≈ 0), which yields cos θ ≈ 1/

√
2.

Therefore, θ ≈ 45◦, and the particles scatter with a 90◦ angle between them. This
agrees with the result from the example in Section 4.7.2, a result which pool players
are very familiar with.

Decays are basically the same as collisions. All you have to do is conserve energy
and momentum, as the following example shows.

Example (Decay at an angle): A particle with mass M and energy E decays
into two identical particles. In the lab frame, they are emitted at angles 90◦ and θ,
as shown in Fig. 11.8. What are the energies of the created particles?

θ
M

E

Figure 11.8
We’ll give two solutions. The second one shows how 4-momenta can be used in a very
clever and time-saving way.

4-momenta of various particles), this invariance is simply the statement in eq. (11.20). For the
inner product of two different 4-momenta, we’ll prove the invariance in Section 12.3.
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First Solution: The 4-momentum before the decay is

P = (E, p, 0, 0), (11.31)

where p =
√

E2 −M2. Let the created particles have mass m. The 4-momenta after
the collision are

P1 = (E1, 0, p1, 0), P2 = (E2, p2 cos θ,−p2 sin θ, 0). (11.32)

Conservation of px immediately gives p2 cos θ = p, which then implies that p2 sin θ =
p tan θ. Conservation of py says that the final py’s are opposites. Therefore, the
4-momenta after the collision are

P1 = (E1, 0, p tan θ, 0), P2 = (E2, p,−p tan θ, 0). (11.33)

Conservation of energy gives E = E1 +E2. Writing this in terms of the momenta and
masses gives

E =
√

p2 tan2 θ + m2 +
√

p2(1 + tan2 θ) + m2. (11.34)

Putting the first radical on the left side, squaring, and solving for that radical (which
is E1) gives

E1 =
E2 − p2

2E
=

M2

2E
. (11.35)

In a similar manner, we find that E2 equals

E2 =
E2 + p2

2E
=

2E2 −M2

2E
. (11.36)

These add up to E, as they should.

Second Solution: With the 4-momenta defined as in eqs. (11.31) and (11.32),
conservation of energy and momentum can be combined into the statement, P =
P1 + P2. Therefore,

P − P1 = P2,

=⇒ (P − P1) · (P − P1) = P2 · P2,

=⇒ P 2 − 2P · P1 + P 2
1 = P 2

2 ,

=⇒ M2 − 2EE1 + m2 = m2,

=⇒ E1 =
M2

2E
.

(11.37)

And then E2 = E − E1 = (2E2 −M2)/2E.

This solution should convince you that 4-momenta can save you a lot of work. What
happened here was that the expression for P2 was fairly messy, but we arranged things
so that it only appeared in the form of P 2

2 , which is simply m2. 4-momenta provide
a remarkably organized method for sweeping unwanted garbage under the rug.
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11.4 Particle-physics units

A branch of physics that uses relativity as one of its main ingredient is Elementary-
Particle Physics, which is the study of the building blocks of matter (electrons,
quarks, neutrinos, etc.). It is unfortunately the case that most of the elementary
particles we want to study don’t exist naturally in the world. We therefore have
to create them in particle accelerators by colliding other particles together at very
high energies. The high speeds involved require the use of relativistic dynamics.
Newtonian physics is essentially useless.

What is a typical size of a rest energy, mc2, of an elementary particle? The rest
energy of a proton (which isn’t really elementary; it’s made up of quarks, but never
mind) is

Ep = mpc
2 = (1.67 · 10−27 kg)(3 · 108 m/s)2 = 1.5 · 10−10 joules. (11.38)

This is very small, of course. So a joule is probably not the best unit to work with.
We would get very tired of writing the negative exponents over and over.

We could perhaps work with “nanojoules”, but particle-physicists like to work
instead with the “eV”, the electron-volt. This is the amount of energy gained by
an electron when it passes through a potential of one volt. The electron charge is
e = 1.6022 · 10−19 C, and a volt is defined as 1V = 1 J/C. So the conversion from
eV to joules is7

1 eV = (1.6022 · 10−19 C)(1 J/C) = 1.6022 · 10−19 J. (11.39)

Therefore, in terms of eV, the rest-energy of a proton is 938 · 106 eV. We now have
the opposite problem of having a large exponent hanging around. But this is easily
remedied by the prefix “M”, which stands for “mega”, or “million”. So we finally
have a proton rest energy of

Ep = 938 MeV. (11.40)

You can work out for yourself that the electron has a rest-energy of Ee = 0.511
MeV. The rest energies of various particles are listed in the table below. The ones
preceded by a “≈” are the averages of differently charged particles, whose energies
differ by a few MeV. These (and the many other) elementary particles have spe-
cific properties (spin, charge, etc.), but for the present purposes they need only be
thought of as point objects having a definite mass.

7This is getting a little picky, but “eV” should actually be written as “eV”, because “eV” stands
for two things that are multiplied together (in contrast with, for example, the “kg” symbol for
“kilogram”), one of which is the electron charge, which is usually denoted by e.
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particle rest energy (MeV)
electron (e) 0.511
muon (µ) 105.7
tau (τ) 1784
proton (p) 938.3
neutron (n) 939.6
lambda (Λ) 1115.6
sigma (Σ) ≈ 1193
delta (∆) ≈ 1232
pion (π) ≈ 137
kaon (K) ≈ 496

We now come to a slight abuse of language. When particle-physicists talk about
masses, they say things like, “The mass of a proton is 938 MeV.” This, of course,
makes no sense, because the units are wrong; a mass can’t equal an energy. But
what they mean is that if you take this energy and divide it by c2, then you get
the mass. It would truly be a pain to keep saying, “The mass is such-and-such an
energy, divided by c2.” For a quick conversion back to kilograms, you can show that

1 MeV/c2 = 1.783 · 10−30 kg. (11.41)

11.5 Force

11.5.1 Force in one dimension

“Force” is a fairly intuitive concept. It is how hard you push or pull on something.
We were told long ago that F equals ma, and this makes sense. If you push an
object in a certain direction, then it accelerates in that direction. But, alas, we’ve
now outgrown the F = ma definition. It’s time to look at things a different way.

The force on an object is hereby defined to be the rate of change of momentum
(we’ll just deal with one-dimensional motion for now),

F =
dp

dt
. (11.42)

This is actually the definition in nonrelativistic physics too, but in that case, where
p = mv, we obtain F = ma anyway. So it doesn’t matter if we define F to be dp/dt
or ma. But in the relativistic case, it does matter, because p = γmv, and γ can
change with time. This will complicate things, and it will turn out that F does not
equal ma. Why do we define F to be dp/dt instead of ma? One reason is given
in the first remark below. Another arises from the general 4-vector formalism in
Chapter 12.

To see what form the F in eq. (11.42) takes in terms of the acceleration, a, note
that

dγ

dt
≡ d

dt

(
1√

1− v2

)
=

vv̇

(1− v2)3/2
≡ γ3va. (11.43)



11.5. FORCE XI-15

Therefore, assuming that m is constant, we have

F =
d(γmv)

dt
= m(γ̇v + γv̇)

= maγ(γ2v2 + 1)
= γ3ma. (11.44)

This doesn’t look as nice as F = ma, but that’s the way it goes.

They said, “F is ma, bar none.”
What they meant wasn’t quite as much fun.
It’s dp by dt,
Which just happens to be
Good ol’ “ma” when γ is 1.

Consider now the quantity dE/dx, where E is the energy, E = γm. We have

dE

dx
=

d(γm)
dx

= m
d(1/

√
1− v2)

dx

= γ3mv
dv

dx
. (11.45)

But v(dv/dx) = dv/dt ≡ a. Therefore, dE/dx = γ3ma, and eq. (11.44) gives

F =
dE

dx
. (11.46)

Note that eqs. (11.42) and (11.46) take exactly the same form as in the nonrela-
tivistic case. The only new thing in the relativistic case is that the expressions for
p and E are modified.

Remarks:

1. Eq. (11.42) is devoid of any physical content, because all it does is define F . If F
were instead defined through eq. (11.46), then eq. (11.46) would be devoid of any
content. The whole point of this section, and the only thing of any substance, is that
(with the definitions p = γmv and E = γm)

dp

dt
=

dE

dx
. (11.47)

This is the physically meaningful statement. If we then want to label both sides of
the equation with the letter F for “force,” so be it. But “force” is simply a name.

2. The result in eq. (11.46) suggests another way to arrive at the E = γm relation. The
reasoning is exactly the same as in the nonrelativistic derivation of energy conservation
in Section 4.1. Define F , as we have done, through eq. (11.42). Then integrate eq.
(11.44) from x1 to x2 to obtain

∫ x2

x1

F dx =
∫ x2

x1

(γ3ma) dx
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=
∫ x2

x1

(
γ3mv

dv

dx

)
dx

=
∫ v2

v1

γ3mv dv

= γm
∣∣∣
v2

v1

, (11.48)

where we have used eq. (11.46). If we then define the “potential energy” as

V (x) ≡ −
∫ x

x0

F (x) dx, (11.49)

where x0 is an arbitrary reference point, we obtain

V (x1) + γm
∣∣∣
v1

= V (x2) + γm
∣∣∣
v2

. (11.50)

We see that the quantity V +γm is independent of x. It is therefore worthy of a name,
and we use the name “energy” due to the similarity with the Newtonian result.8

The work-energy theorem (that is,
∫

F dx = ∆E) holds in relativistic physics, just
as it does in the nonrelativistic case. The only difference is that E is γm instead of
mv2/2. ♣

11.5.2 Force in two dimensions

In two dimensions, the concept of force becomes a little strange. In particular, as
we will see, the acceleration of an object need not point in the same direction as the
force. We start with the definition,

F =
dp
dt

. (11.51)

This is a vector equation. Without loss of generality, let us deal with only two
spatial dimensions. Consider a particle moving in the x-direction, and let us apply
a force, F = (Fx, Fy). The particle’s momentum is

p =
m(vx, vy)√
1− v2

x − v2
y

. (11.52)

Taking the derivative of this, and using the fact that vy is initially zero, we obtain

F =
dp
dt

∣∣∣∣
vy=0

= m

(
v̇x√

1− v2
+

vx(vxv̇x + vyv̇y)
(
√

1− v2)3
,

v̇y√
1− v2

+
vy(vxv̇x + vyv̇y)

(
√

1− v2)3

) ∣∣∣∣∣
vy=0

8Actually, this derivation only suggests that E is given by γm up to an additive constant. For
all we know, E might take the form, E = γm −m, which would make the energy of a motionless
particle equal to zero. An argument along the lines of Section 11.1.2 is required to show that the
additive constant is zero.
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= m

(
v̇x√

1− v2

(
1 +

v2

1− v2

)
,

v̇y√
1− v2

)

= m

(
v̇x

(
√

1− v2)3
,

v̇y√
1− v2

)

≡ m(γ3ax, γay). (11.53)

We see that this is not proportional to (ax, ay). The first component agrees with eq.
(11.44), but the second component has only one factor of γ. The difference comes
from the fact that γ has a first-order change if vx changes, but not if vy changes,
assuming that vy is initially zero. The particle therefore responds differently to
forces in the x- and y-directions. It is easier to accelerate something in the transverse
direction.

11.5.3 Transformation of forces

Let a force act on a particle. How are the components of the force in the particle’s
frame, S′, related to the components of the force in another frame, S?9 Let the
relative motion be along the x- and x′-axes, as in Fig. 11.9. In frame S, eq. (11.53)

x x'

S S'

v

Figure 11.9says
(Fx, Fy) = m(γ3ax, γay). (11.54)

And in frame S′, the γ factor for the particle equals 1, so eq. (11.53) reduces to the
usual expression,

(F ′
x, F ′

y) = m(a′x, a′y). (11.55)

Let’s now try to relate these two forces, by writing the primed accelerations on the
right-hand side of eq. (11.55) in terms of the unprimed accelerations.

First, we have a′y = γ2ay. This is true because transverse distances are the same
in the two frames, but times are shorter in S′ by a factor γ. That is, dt′ = dt/γ. We
have indeed put the γ in the right place here, because the particle is essentially at rest
in S′, so the usual time dilation holds. Therefore, a′y ≡ d2y′/dt′2 = d2y/(dt/γ)2 ≡
γ2ay.

Second, we have a′x = γ3ax. In short, this is true because time dilation brings
in two factors of γ (as in the ay case), and length contraction brings in one. In a
little more detail: Let the particle move from one point to another in frame S′, as it
accelerates from rest in S′. Mark these two points, which are a distance a′x(dt′)2/2
apart, in S′. As S′ flies past S, the distance between the two marks will be length
contracted by a factor γ, as viewed by S. This distance (which is the excess distance
the particle has over what it would have had if there were no acceleration) is what
S calls ax(dt)2/2. Therefore,

1
2
ax dt2 =

1
γ

(
1
2
a′x dt′2

)
=⇒ a′x = γax

(
dt

dt′

)2

= γ3ax. (11.56)

9To be more precise, S′ is the instantaneous inertial frame of the particle. Once the force is
applied, the particle’s frame will no longer be S′. But for a very small elapsed time, the particle
will still essentially be in S′.
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Eq. (11.55) may now be written as

(F ′
x, F ′

y) = m(γ3ax, γ2ay). (11.57)

Finally, comparing eqs. (11.54) and (11.57), we find

Fx = F ′
x, and Fy =

F ′
y

γ
. (11.58)

We see that the longitudinal force is the same in the two frames, but the transverse
force is larger by a factor of γ in the particle’s frame.

Remarks:

1. What if someone comes along and relabels the primed and unprimed frames in eq.
(11.58), and concludes that the transverse force is smaller in the particle’s frame? He
certainly can’t be correct, given that eq. (11.58) is true, but where is the error?

The error lies in the fact that we (correctly) used dt′ = dt/γ above, because this is
the relevant expression concerning two events along the particle’s worldline. We are
interested in two such events, because we want to see how the particle moves. The
inverted expression, dt = dt′/γ, deals with two events located at the same position in
S, and therefore has nothing to do with the situation at hand. Similar reasoning holds
for the relation between dx and dx′. There is indeed one frame here that is special
among all the possible frames, namely the particle’s instantaneous inertial frame.

2. If you want to compare forces in two frames, neither of which is the particle’s rest
frame, then just use eq. (11.58) twice and relate each of the forces to the rest-
frame forces. It quickly follows that for another frame S′′, we have F ′′x = Fx, and
γ′′F ′′y = γFy, where the γ’s are measured relative to the rest fame, S′. ♣

Example (Bead on a rod): A spring with a tension has one end attached to the
end of a rod, and the other end attached to a bead which is constrained to move along
the rod. The rod makes an angle θ′ with respect to the x′-axis, and is fixed at rest in
the S′ frame (see Fig. 11.10). The bead is released and is pulled along the rod.

v

x'

S

S'

'θ

rod

F'

a'

Figure 11.10

When the bead is released, what does the situation look like in the frame, S, of
someone moving to the left at speed v? In answering this, draw the directions of

(a) the rod,

(b) the acceleration of the bead, and

(c) the force on the bead.

In frame S, does the wire exert a force of constraint?

Solution: In frame S:

(a) The horizontal span of the rod is decreased by a factor γ, due to length contrac-
tion, and the vertical span is unchanged, so we have tan θ = γ tan θ′, as shown
in Fig. 11.11.

x

S

'θ θ

'θ

φ

tan

tan

tan

'θtan

θ

φ

γ

γ

F
a

_1

=

=

rod

Figure 11.11
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(b) The acceleration must point along the rod, because the bead always lies on
the rod. Quantitatively, the position of the bead in frame S takes the form of
(x, y) = (vt − axt2/2,−ayt2/2), by the definition of acceleration. The position
relative to the starting point on the rod, which has coordinates (vt, 0), is then
(∆x,∆y) = (−axt2/2,−ayt2/2). The condition for the bead to stay on the rod
is that the ratio of these coordinates be equal the slope of the rod in Frame S.
Therefore, ay/ax = tan θ, so the acceleration points along the rod.

(c) The y-component of the force on the bead is decreased by a factor γ, by eq.
(11.58), so we have tanφ = (1/γ) tan θ′, as shown in the figure.

As a double-check that a does indeed point along the rod, we can use eq. (11.53) to
write ay/ax = γ2Fy/Fx. Then eq. (11.58) gives ay/ax = γF ′y/F ′x = γ tan θ′ = tan θ,
which is the direction of the wire.
The wire does not exert a force of constraint. The bead need not touch the wire in
S′, so it need not touch it in S. Basically, there is no need to have an extra force to
combine with F to make the result point along a, because F simply does not have to
be collinear with a.

11.6 Rocket motion

Up to this point, we have dealt with situations where the masses of our particles are
constant, or where they change abruptly (as in a decay, where the sum of the masses
of the products is less than the mass of the initial particle). But in many problems,
the mass of an object changes continuously. A rocket is the classic example of this
type of situation. Hence, we will use the term “rocket motion” to describe the
general class of problems where the mass changes continuously.

The relativistic rocket itself encompasses all of the important ideas, so let’s study
that example here. Many more examples are left for the problems. We’ll present
three solutions to the rocket problem, the last of which is rather slick. In the end,
the solutions are all basically the same, but it should be helpful to see the various
ways of looking at the problem.

Example (Relativistic rocket): Assume that a rocket propels itself by continually
converting mass into photons and firing them out the back. Let m be the instanta-
neous mass of the rocket, and let v be the instantaneous speed with respect to the
ground. Show that

dm

m
+

dv

1− v2
= 0. (11.59)

If the initial mass is M , and the initial v is zero, integrate eq.(11.59) to obtain

m = M

√
1− v

1 + v
. (11.60)

First solution: The strategy of this solution will be to use conservation of momen-
tum in the ground frame.
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Consider the effect of a small mass being converted into photons. The mass of the
rocket goes from m to m + dm (where dm is negative). So in the frame of the rocket,
photons with total energy Er = −dm (which is positive) are fired out the back. In
the frame of the rocket, these photons have momentum pr = dm (which is negative).
Let the rocket move with speed v with respect to the ground. Then the momentum
of the photons in the ground frame, pg, may be found via the Lorentz transformation,

pg = γ(pr + vEr) = γ
(
dm + v(−dm)

)
= γ(1− v) dm. (11.61)

This is still negative, of course.

Remark: A common error is to say that the converted mass (−dm) takes the form of

photons of energy (−dm) in the ground frame. This is incorrect, because although the

photons have energy (−dm) in the rocket frame, they are redshifted (due to the Doppler

effect) in the ground frame. From eq. (10.48), we see that the frequency (and hence the

energy) of the photons decreases by a factor of
√

(1− v)/(1 + v) when going from the rocket

frame to the ground frame. This factor equals the γ(1− v) factor in eq. (11.61). ♣

We may now use conservation of momentum in the ground frame to say that

(mγv)old = γ(1−v) dm+(mγv)new =⇒ γ(1−v) dm+d(mγv) = 0. (11.62)

The d(mγv) term may be expanded to give

d(mγv) = (dm)γv + m(dγ)v + mγ(dv)
= γv dm + m(γ3v dv)v + mγ dv

= γv dm + mγ(γ2v2 + 1) dv

= γv dm + mγ3 dv. (11.63)

Therefore, eq. (11.62) gives

0 = γ(1− v) dm + γv dm + mγ3dv

= γ dm + mγ3 dv. (11.64)

Hence,
dm

m
+

dv

1− v2
= 0, (11.65)

in agreement with eq. (11.59). We must now integrate this. With the given initial
values, we have ∫ m

M

dm

m
+

∫ v

0

dv

1− v2
= 0. (11.66)

We could simply look up the dv integral in a table, but let’s do it from scratch.10

Writing 1/(1− v2) as the sum of two fractions gives
∫ v

0

dv

1− v2
=

1
2

∫ v

0

(
1

1 + v
+

1
1− v

)
dv

=
1
2

(
ln(1 + v)− ln(1− v)

)∣∣∣∣
v

0

=
1
2

ln
(

1 + v

1− v

)
. (11.67)

10Tables often list the integral of 1/(1 − v2) as tanh−1(v), which you can show is equivalent to
the result in eq. (11.67).
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Eq. (11.66) therefore gives

ln
( m

M

)
= −1

2
ln

(
1 + v

1− v

)

=⇒ m = M

√
1− v

1 + v
, (11.68)

in agreement with eq. (11.60). This result is independent of the rate at which the
mass is converted into photons. It is also independent of the frequency of the emitted
photons. Only the total mass expelled matters.

Note that eq. (11.68) quickly tells us that the energy of the rocket, as a function of
velocity, is

E = γm = γM

√
1− v

1 + v
=

M

1 + v
. (11.69)

This has the interesting property of approaching M/2 as v → c. In other words,
half of the initial energy remains with the rocket, and half ends up as photons (see
Exercise 18).

Remark: From eq. (11.61), or from the previous remark, we see that the ratio of the energy

of the photons in the ground frame to that in the rocket frame is
√

(1− v)/(1 + v). This

factor is the same as the factor in eq. (11.68). In other words, the photons’ energy decreases

in exactly the same manner as the mass of the rocket (assuming that the photons are ejected

with the same frequency in the rocket frame throughout the process). Therefore, in the

ground frame, the ratio of the photons’ energy to the mass of the rocket doesn’t change with

time. There must be a nice intuitive explanation for this, but it eludes me. ♣

Second solution: The strategy of this solution will be to use F = dp/dt in the
ground frame.

Let τ denote the time in the rocket frame. Then in the rocket frame, dm/dτ is the
rate at which the mass of the rocket decreases and is converted into photons (dm
is negative). The photons therefore acquire momentum at the rate dp/dτ = dm/dτ
in the rocket frame. Since force is the rate of change of momentum, we see that a
force of dm/dτ pushes the photons backward, and an equal and opposite force of
F = −dm/dτ pushes the rocket forward in the rocket frame.

Now go to the ground frame. We know from eq. (11.58) that the longitudinal force is
the same in both frames, so F = −dm/dτ is also the force on the rocket in the ground
frame. And since t = γτ , where t is the time on the ground (the photon emissions
occur at the same place in the rocket frame, so we have indeed put the time-dilation
factor of γ in the right place), we have

F = −γ
dm

dt
. (11.70)

Remark: We can also calculate the force on the rocket by working entirely in the ground

frame. Consider a mass (−dm) that is converted into photons. Initially, this mass is traveling

along with the rocket, so it has momentum (−dm)γv. After it is converted into photons, it has

momentum γ(1−v) dm (from the first solution above). The change in momentum is therefore

γ(1 − v) dm − (−dm)γv = γ dm. Since force is the rate of change of momentum, a force of

γ dm/dt pushes the photons backwards, and an equal and opposite force of F = −γ dm/dt

therefore pushes the rocket forwards. ♣
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Now things get a little tricky. It is tempting to write down F = dp/dt = d(mγv)/dt =
(dm/dt)γv + md(γv)/dt. This, however, is not correct, because the dm/dt term is
not relevant here. When the force is applied to the rocket at an instant when the
rocket has mass m, the only thing the force cares about is that the mass of the rocket
at the given instant is m. It doesn’t care that m is changing.11 Therefore, the correct
expression we want is

F = m
d(γv)

dt
. (11.71)

As in the first solution above, or in eq. (11.44), we have d(γv)/dt = γ3 dv/dt. Using
the F from eq. (11.70), we arrive at

−γ
dm

dt
= mγ3 dv

dt
, (11.72)

which is equivalent to eq. (11.64). The solution proceeds as above.

Third solution: The strategy of this solution will be to use conservation of energy
and momentum in the ground frame, in a slick way.
Consider a clump of photons fired out the back. The energy and momentum of these
photons are equal in magnitude and opposite in sign (with the convention that the
photons are fired in the negative direction). By conservation of energy and momen-
tum, the same statement must be true about the changes in energy and momentum
of the rocket. That is,

d(γm) = −d(γmv) =⇒ d(γm + γmv) = 0. (11.73)

Therefore, γm(1 + v) is a constant. We are given that m = M when v = 0. Hence,
the constant must be M . Therefore,

γm(1 + v) = M =⇒ m = M

√
1− v

1 + v
. (11.74)

Now, that’s a quick solution, if there ever was one!

11.7 Relativistic strings

Consider a “massless” string with a tension that is constant (that is, independent
of length).12 We will call such objects relativistic strings, and we will study them
for two reasons. First, these strings, or reasonable approximations thereof, actually
do occur in nature. For example, the gluon force which holds quarks together is
approximately constant over distance. And second, they open the door to a whole
new supply of problems we can solve, like the following one.

11Said in a different way, the momentum associated with the missing mass still exists. It’s just
that it’s not part of the rocket anymore. This issue is expanded on in Appendix E.

12By “massless,” we mean that the string has no mass in its unstretched (that is, zero-length)
state. Once it is stretched, it will have energy, and hence mass.
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Example (Mass connected to a wall): A mass m is connected to a wall by a
relativistic string with tension T . The mass starts next to the wall and has initial
speed v away from it (see Fig. 11.12). What is the maximum distance from the wall

vm

Figure 11.12the mass achieves? How much time does it take to reach this point?

Solution: Let ` be the maximum distance from the wall. The initial energy of
the mass is E = γm. The final energy at x = ` is simply m, because the mass is
instantaneously at rest there. Integrating F = dE/dx, and using the fact that the
force always equals −T , gives

F∆x = ∆E =⇒ (−T )` = m− γm =⇒ ` =
m(γ − 1)

T
. (11.75)

Let t be the time it takes to reach this point. The initial momentum of the mass is
p = γmv. Integrating F = dp/dt, and using the fact that the force always equals −T ,
gives

F∆t = ∆p =⇒ (−T )t = 0− γmv =⇒ t =
γmv

T
. (11.76)

Note that we cannot use F = ma to do this problem. F does not equal ma. It equals
dp/dt (and also dE/dx).

Relativistic strings may seem a bit strange, but there is nothing more to solving
a one-dimensional problem than the two equations,

F =
dp

dt
, and F =

dE

dx
. (11.77)

Example (Where the masses meet): A relativistic string of length ` and tension
T connects a mass m and a mass M (see Fig. 11.13). The masses are released from

m l

T

M

Figure 11.13

rest. Where do they meet?

Solution: Let the masses meet at a distance x from the initial position of m. At this
meeting point, F = dE/dx tells us that the energy of m is m+Tx, and the energy of
M is M +T (`−x). Using p =

√
E2 −m2 we see that the magnitudes of the momenta

at the meeting point are

pm =
√

(m + Tx)2 −m2 and pM =
√

(M + T (`− x))2 −M2 . (11.78)

But F = dp/dt then tells us that these must be equal, because the same force (in
magnitude, but opposite in direction) acts on the two masses for the same time.
Equating the above p’s gives

x =
`
(
T (`/2) + M

)

M + m + T`
. (11.79)

This is reassuring, because the answer is simply the location of the initial center of
mass, with the string being treated (quite correctly) like a stick of length ` and mass
T` (divided by c2).
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Remark: Let’s check a few limits. In the limit of large T or ` (more precisely, in the limit

T` À Mc2 and T` À mc2), we have x = `/2. This makes sense, because in this case the

masses are negligible and therefore both move at essentially speed c, and hence meet in the

middle. In the limit of small T or ` (more precisely, in the limit T` ¿ Mc2 and T` ¿ mc2),

we have x = M`/(M + m), which is simply the Newtonian result for an everyday-strength

spring. ♣

11.8 Mass

Some treatments of relativity refer to the mass of a motionless particle as the “rest-
mass” m0, and the mass of moving particle as the “relativistic mass” mrel = γm0.
This terminology is misleading and should be avoided. There is no such thing as
“relativistic mass.” There is only one “mass” associated with an object. This mass
is what the above treatments would call the “rest mass.”13 And since there is only
one type of mass, there is no need to use the qualifier “rest” or the subscript “0.”
We therefore simply use the notation “m.” In this section, we will explain why
“relativistic mass” is not a good concept to use.14

Why might someone want to call mrel ≡ γm the mass of a moving particle? The
basic reason is that the momentum takes the nice Newtonian form of p = mrelv.
The tacit assumption here is that the goal is to assign a mass to the particle such
that all the Newtonian expressions continue to hold, with the only change being a
modified mass. That is, we want our particle to act in exactly the same way that a
particle of mass γm would, according to our everyday intuition.15

If we insist on hanging onto our Newtonian rules, let’s see what they imply. If
we want our particle to act as a mass γm does, then we must have F = (γm)a.
However, we saw in Section 11.5.2 that although this equation is true for transverse
forces, it is not true for longitudinal forces. The γm would have to be replaced by
γ3m for a longitudinal force. As far as acceleration goes, a mass reacts differently
to forces that point in different directions. We therefore see that it is impossible to
assign a unique mass to a moving particle, such that it behaves in a Newtonian way
under all circumstances. Not only is the goal of thinking of things in a Newtonian
way ill-advised, it is doomed to failure.

13For example, the mass of an electron is 9.11 · 10−31 kg, and the mass of a liter of water is 1 kg,
independent of the speed.

14Of course, you can define the quantity γm with any name you want. You can call it “relativistic
mass,” or you can call it “pumpkin pie.” The point is that the connotations associated with these
definitions will mislead you into thinking certain things are true when they are not. The quantity
γm does not behave as you might want a mass to behave (as we will show). And it also doesn’t
make for a good dessert.

15This goal should send up a red flag. It is similar to trying to think about quantum mechanics
in terms of classical mechanics. It simply cannot be done. All analogies will eventually break down
and lead to incorrect conclusions. It is quite silly to try to think about a (more) correct theory
(relativity or quantum mechanics) in terms of an incorrect theory (classical mechanics), simply
because our intuition (which is limited and incorrect) is based on the latter.
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“Force is my a times my ‘mass’,”
Said the driver, when starting to pass.
But from what we’ve just learned,
He was right when he turned,
But wrong when he stepped on the gas.

The above argument closes the case on this subject, but there are a few other
arguments that show why it is not good to think of γm as a mass.

The word “mass” is used to describe what is on the right-hand side of the
equation, E2− |p|2 = m2. The m2 here is an invariant, that is, it is something that
is independent of the frame of reference. E and the components of p, on the other
hand, are components of a 4-vector. They depend on the frame. If “mass” is to be
used in this definite way to describe an invariant, then it doesn’t make sense to also
use it to describe the quantity γm, which is frame-dependent. And besides, there is
certainly no need to give γm another name. It already goes by the name “E,” up
to factors of c.

It is often claimed that γm is the “mass” that appears in the expression for
gravitational force. If this were true, then it might be reasonable to use “mass” as
a label for the quantity γm. But, in fact, it is not true. The gravitational force
depends in a somewhat complicated way on the motion of the particle. For example,
the force depends on whether the particle is moving longitudinally or transversely
to the source. We cannot demonstrate this fact here, but suffice it to say that if one
insists on using the naive force law, F = Gm1m2/r2, then it is impossible to label
the particle with a unique mass.
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11.9 Exercises

Section 11.2: Transformations of E and ~p

1. Energy of two masses *
Two masses M move at speed V , one to the east and one to the west. What
is the total energy of the system?

Now consider the setup as viewed from a frame moving to the west at speed
u. Find the energy of each mass in this frame. Is the total energy larger or
smaller than the total energy in the lab frame?

2. System of particles *
Given ptotal and Etotal for a system of particles, use a Lorentz transformation
to find the velocity of the CM. More precisely, find the speed of the frame in
which the total momentum is zero.

3. CM frame **
A mass m travels at speed 3c/5, and another mass m sits at rest.

(a) Find the energy and momentum of the two particles in the lab frame.
(b) Find the speed of the CM of the system, by using a velocity-addition

argument.
(c) Find the energy and momentum of the two particles in the CM frame.
(d) Verify that the E’s and p’s are related by the relevant Lorentz transfor-

mations.
(e) Verify that E2

total − p2
total is the same in both frames.

4. Transformation for 2-D motion **
A particle has velocity (u′x, u′y) in frame S′, which travels at speed v in the
x-direction relative to frame S. Use the velocity addition formulas in Section
10.3.3 (eqs. (10.33) and (10.35)) to show that E and px transform according
to eq. (11.18), and also that py = p′y.

Hint: This gets a bit messy, but the main thing you need to show is

γu = γu′γv(1 + u′xv), where u =
√

u2
x + u2

y and u′ =
√

u′2x + u′2y (11.80)

are the speeds in the two frames.

Section 11.3: Collisions and decays

5. Photon, mass collision *
A photon with energy E collides with a stationary mass m. The combine to
form one particle. What is the mass of this particle? What is its speed?

6. A decay *
A mass M decays into a mass m and a photon. If the speed of m is v, find m
and also the energy of the photon (in terms of M and v).
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7. Three photons *
A mass m travels with speed v. It decays into three photons, one of which
travels in the forward direction, and the other two of which move at angles of
120◦ (in the lab frame) as shown in Fig. 11.14. What are the energies of these

m v

120

120

120

Figure 11.14three photons?

8. Perpendicular photon *
A photon with energy E collides with a mass M . The mass M scatters off
at an angle. If the resulting photon moves perpendicularly to the incident
photon’s direction, as shown in Fig. 11.15, what is its energy?

M

ME 

E' 

Figure 11.15

9. Another perpendicular photon **
A mass m moving with speed 4c/5 collides with another mass m at rest. The
collision produces a photon with energy E traveling perpendicularly to the
original direction, and a mass M traveling in another direction, as shown in
Fig. 11.16. In terms of E and m, what is M? What is the largest value of E

m m

M

E 

4

5

c__

Figure 11.16

(in terms of m) for which this setup is possible?

10. Colliding diagonally *
A mass m moving northeastward at speed 4c/5 collides with a photon moving
southeastward. The result of the collision is one particle of mass M moving
eastward, as shown in Fig. 11.17 Find the energy of the photon, the mass M ,

m

M45

45

4

5

c__

Figure 11.17

and the speed of M . (Give the first two of these answers in terms of m.)

11. Decay into photons *
A mass M traveling at 3c/5 decays into a mass M/4 and two photons. One
photon moves perpendicularly to the original direction, the other photon moves
off at an angle θ, and the mass M/4 is at rest, as shown in Fig. 11.18. What

M M/4
θ3c/5

Figure 11.18

is θ?

12. Three masses colliding *
Three masses m, all traveling at speed v = 4c/5, collide at the origin and
produce a particle of mass M . The three original velocities are in the northeast,
north, and northwest directions. Find M and its velocity.

13. Maximum mass *
A photon and a mass m move in opposite directions. They collide head-on
and create a new particle. If the total energy of the system is E, how should
it be divided between the photon and the mass m, so that the mass of the
resulting particle is as large as possible?
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Section 11.4: Particle-physics units

14. Pion-muon race *
A pion and a muon each have energy 10 GeV. They have a 100 m race. By
how much distance does the muon win?

Section 11.5: Force

15. Force and a collision *
Two identical masses m are at rest, a distance x apart. A constant force F
accelerates one of them towards the other until they collide and stick together.
How much time does this take? What is the mass of the resulting particle?

16. Pushing on a mass **
A mass m starts at rest. You push on it with a constant force F .

(a) How much time, t, does it take to move the mass a distance x? (Both t
and x here are measured in the lab frame.)

(b) After a very long time, the speed of m will approach the speed of light.
Therefore, after a very long time, m will remain (approximately) a con-
stant distance (as measured in the lab frame) behind a photon that was
emitted at t = 0 from the starting position of m. Show that this distance
equals mc2/F .

17. Momentum paradox ***
Two equal masses are connected by a massless string with tension T . The
masses are constrained to move with speed v along parallel lines, as shown
in Fig. 11.19. The constraints are then removed, and the masses are drawn

v

v

T

Figure 11.19

together. They collide and make one blob which continues to move to the
right. Is the following reasoning correct? If your answer is “no”, state what is
invalid about whichever of the four sentences is/are invalid.

“The forces on the masses point in the y-direction. Therefore, there is no
change in momentum in the x-direction. But the mass of the resulting blob
is greater than the sum of the initial masses (because they collided with some
relative speed). Therefore, the speed of the resulting blob must be less than v
(to keep px constant), so the whole apparatus slows down in the x-direction.”

Section 11.6: Rocket motion

18. Rocket energy **
As mentioned at the end of the first solution to the rocket problem in Section
11.6, the energy of the rocket in the ground frame equals M/(1 + v). Derive
this result again, by integrating up the amount of energy that the photons
have in the ground frame.
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Section 11.7: Relativistic strings

19. Two masses *
A mass m is placed right in front of an identical one. They are connected by a
relativistic string with tension T . The front one suddenly acquires a speed of
3c/5. How far from the starting point will the masses collide with each other?



XI-30 CHAPTER 11. RELATIVITY (DYNAMICS)

11.10 Problems

Section 11.1: Energy and momentum

1. Deriving E and p **
Accepting the facts that the energy and momentum of a photon are E = hν
and p = hν/c (where ν is the frequency of the light wave, and h is Planck’s
constant), derive the relativistic formulas for the energy and momentum of a
massive particle, E = γmc2 and p = γmv. Hint: Consider a mass m that
decays into two photons. Look at this decay both in the rest frame of the
mass, and in a frame where the mass has speed v. You’ll need to use the
Doppler effect.

Section 11.3: Collisions and decays

2. Colliding photons

Two photons each have energy E. They collide at an angle θ and create a
particle of mass M . What is M?

3. Increase in mass

A large mass M , moving with speed V , collides and sticks to a small mass
m, initially at rest. What is the mass of the resulting object? Work in the
approximation where M À m.

4. Compton scattering **
A photon collides with a stationary electron. If the photon scatters at an angle
θ (see Fig. 11.20), show that the resulting wavelength, λ′, is given in terms of

m

m

θ

λ

λ
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Figure 11.20

the original wavelength, λ, by

λ′ = λ +
h

mc
(1− cos θ), (11.81)

where m is the mass of the electron. Note: The energy of a photon is E =
hν = hc/λ.

5. Bouncing backwards **
A ball of mass M and energy E collides head-on elastically with a stationary
ball of mass m. Show that the final energy of mass M is

E′ =
2mM2 + E(m2 + M2)

m2 + M2 + 2Em
. (11.82)

Hint: This problem is a little messy, but you can save yourself a lot of trouble
by noting that E′ = E must be a root of an equation you get for E′. (Why?)

6. Two-body decay *
A mass MA decays into masses MB and MC . What are the energies of MB

and MC? What are their momenta?
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7. Threshold energy *
A particle of mass m and energy E collides with an identical stationary par-
ticle. What is the threshold energy for a final state containing N particles of
mass m? (“Threshold energy” is the minimum energy for which the process
occurs.)

Section 11.5: Force

8. Relativistic harmonic oscillator **
A particle of mass m moves along the x-axis under a force F = −mω2x. The
amplitude is b. Show that the period is given by

T =
4
c

∫ b

0

γ√
γ2 − 1

dx, (11.83)

where

γ = 1 +
ω2

2c2
(b2 − x2). (11.84)

9. System of masses **
Consider a dumbbell made of two equal masses, m. The dumbbell spins
around, with its center pivoted at the end of a stick (see Fig. 11.21). If

mv

vm

Figure 11.21the speed of the masses is v, then the energy of the system is 2γm. Treated
as a whole, the system is at rest. Therefore, the mass of the system must be
2γm. (Imagine enclosing it in a box, so that you can’t see what is going on
inside.)

Convince yourself that the system does indeed behave like a mass of M = 2γm,
by pushing on the stick (when the dumbbell is in the “transverse” position
shown in the figure) and showing that F ≡ dp/dt = Ma.

Section 11.6: Rocket motion

10. Relativistic rocket **
Consider the relativistic rocket from Section 11.6. Let mass be converted to
photons at a rate σ in the rest frame of the rocket. Find the time, t, in the
ground frame as a function of v.16 (Alas, it is not possible to invert this, to
get v as a function of t.)

11. Relativistic dustpan I *
A dustpan of mass M is given an initial relativistic speed. It gathers up dust
with mass density λ per unit length on the floor (as measured in the lab frame).
At the instant the speed is v, find the rate (as measured in the lab frame) at
which the mass of the dustpan-plus-dust-inside system is increasing.

16This involves a slightly tricky integral. Pick your favorite method – pencil, book, or computer.
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12. Relativistic dustpan II **
Consider the setup in Problem 11. If the initial speed of the dustpan is V ,
what are v(x), v(t), and x(t)? All quantities here are measured with respect
to the lab frame.

13. Relativistic dustpan III **
Consider the setup in Problem 11. Calculate, in both the dustpan frame and
lab frame, the force on the dustpan-plus-dust-inside system (due to the newly
acquired dust particles smashing into it) as a function of v, and show that the
results are equal.

14. Relativistic cart I ****
A long cart moves at relativistic speed v. Sand is dropped into the cart at a
rate dm/dt = σ in the ground frame. Assume that you stand on the ground
next to where the sand falls in, and you push on the cart to keep it moving
at constant speed v. What is the force between your feet and the ground?
Calculate this force in both the ground frame (your frame) and the cart frame,
and show that the results are equal.

15. Relativistic cart II ****
A long cart moves at relativistic speed v. Sand is dropped into the cart at a
rate dm/dt = σ in the ground frame. Assume that you grab the front of the
cart and pull on it to keep it moving at constant speed v (while running with
it). What force does your hand apply to the cart? (Assume that the cart is
made of the most rigid material possible.) Calculate this force in both the
ground frame and the cart frame (your frame), and show that the results are
equal.

Section 11.6: Relativistic strings

16. Different frames **

(a) Two masses m are connected by a string of length ` and constant ten-
sion T . The masses are released simultaneously. They collide and stick
together. What is the mass, M , of the resulting blob?

(b) Consider this scenario from the point of view of a frame moving to the
left with speed v (see Fig. 11.22). The energy of the resulting blob

v

m l m

T

Figure 11.22
must be γMc2, from part (a). Show that you obtain this same result by
computing the work done on the two masses.

17. Splitting mass **
A massless string with constant tension T has one end attached to a wall and
the other end attached to a mass M . The initial length of the string is ` (see
Fig. 11.23). The mass is released. Halfway to the wall, the back half of the

l M

T

Figure 11.23
mass breaks away from the front half (with zero initial relative speed). What
is the total time it takes the front half to reach the wall?
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18. Relativistic leaky bucket ***
The mass M in Problem 17 is replaced by a massless bucket containing an ini-
tial mass M of sand (see Fig. 11.24). On the way to the wall, the bucket leaks

l
M

T

Figure 11.24
sand at a rate dm/dx = M/`, where m denotes the mass at later positions.
(Note that the rate is constant with respect to distance, not time.)

(a) What is the energy of the bucket, as a function of distance from the wall?
What is its maximum value? What is the maximum value of the kinetic
energy?

(b) What is the momentum of the bucket, as a function of distance from the
wall? Where is it maximum?

19. Relativistic bucket ***

(a) A massless string with constant tension T has one end attached to a wall
and the other end attached to a mass m. The initial length of the string
is ` (see Fig. 11.25). The mass is released. How long does it take to

l m

T

Figure 11.25

reach the wall?

(b) Let the string now have length 2`, with a mass m on the end. Let another
mass m be positioned next to the ` mark on the string, but not touching
the string (see Fig. 11.26). The right mass is released. It heads toward

l l m
m

T

Figure 11.26the wall (while the other mass is still motionless), and then sticks to the
other mass to make one large blob, which then heads toward the wall.17

How much time does this whole process take?18

(c) Let there now be N masses and a string of length N` (see Fig. 11.27). l m

T

(N=5)

Figure 11.27

How much time does this whole process take?

(d) Consider now a massless bucket at the end of the string (of length L)
which gathers up a continuous stream of sand (of total mass M), as it
gets pulled to the wall (see Fig. 11.28). How much time does this whole

L

M

T

Figure 11.28

process take? What is the mass of the contents of the bucket right before
it hits the wall?

17The left mass could actually be attached to the string, and we would still have the same
situation. The mass wouldn’t move during the first part of the process, because there would be
equal tensions T on both sides of it.

18You can do this in various ways, but one method that generalizes nicely for the next part is to
show that ∆(p2) = (E2

2 − E2
1) + (E2

4 − E2
3), where the energies of the moving object (that is, the

initial m or the resulting blob) are: E1 right at the start, E2 just before the collision, E3 just after
the collision, and E4 right before the wall. Note that this method does not require knowledge of
the mass of the blob (which is not 2m).
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11.11 Solutions

1. Deriving E and p

We’ll derive the energy formula, E = γmc2, first. Let the given mass decay into two
photons, and let E0 be the energy of the mass in its rest frame. Then each of the
resulting photons has energy E0/2 in this frame.
Now look at the decay in a frame where the mass moves at speed v. From eq. (10.48),
the frequencies of the photons are Doppler-shifted by the factors

√
(1 + v)/(1− v) and√

(1− v)/(1 + v). Since the photons’ energies are given by E = hν, their energies
are shifted by these same factors, relative to the E0/2 value in the original frame.
Conservation of energy then says that in the moving frame, the mass (which is moving
at speed v) has energy

E =
E0

2

√
1 + v

1− v
+

E0

2

√
1− v

1 + v
= γE0. (11.85)

We therefore see that a moving mass has an energy that is γ times its rest energy.
We will now use the correspondence principle (which says that relativistic formulas
must reduce to the familiar nonrelativistic ones, in the nonrelativistic limit) to find
E0 in terms of m. We just found that the difference between the energies of a moving
mass and a stationary mass is γE0 − E0. This must reduce to the familiar kinetic
energy, mv2/2, in the limit v ¿ c. In other words,

mv2

2
≈ E0√

1− v2/c2
− E0

≈ E0

(
1 +

v2

2c2

)
− E0

=
(

E0

c2

)
v2

2
, (11.86)

where we have used the Taylor series, 1/
√

1− ε ≈ 1 + ε/2. Therefore E0 = mc2, and
hence E = γmc2.
We can derive the momentum formula, p = γmv, in a similar way. Let the magnitude
of the photons’ (equal and opposite) momenta in the particle’s rest frame be p0/2.19

Using the Doppler-shifted frequencies as above, we see that the total momentum of
the photons in the frame where the mass moves at speed v is

p =
p0

2

√
1 + v

1− v
− p0

2

√
1− v

1 + v
= γp0v. (11.87)

Putting the c’s back in, we have p = γp0v/c. By conservation of momentum, this is
the momentum of the mass m moving at speed v.
We can now use the correspondence principle to find p0 in terms of m. If p = γ(p0/c)v
is to reduce to the familiar p = mv result in the limit v ¿ c, then we must have
p0 = mc. Therefore, p = γmv.

2. Colliding photons
The 4-momenta of the photons are (see Fig. 11.29)
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Figure 11.29 19With the given information that a photon has E = hν and p = hν/c, we can use the preceding
E0 = mc2 result to quickly conclude that p0 = mc. But let’s pretend that we haven’t found E0 yet.
This will give us an excuse to use the correspondence principle again.
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Pγ1 = (E, E, 0, 0), and Pγ2 = (E, E cos θ, E sin θ, 0). (11.88)

Energy and momentum are conserved, so the 4-momentum of the final particle is
PM = (2E, E + E cos θ, E sin θ, 0). Hence,

M2 = PM · PM = (2E)2 − (E + E cos θ)2 − (E sin θ)2. (11.89)

Therefore, the desired mass is

M = E
√

2(1− cos θ) . (11.90)

If θ = 180◦ then M = 2E, as it should (none of the final energy is kinetic). And if θ = 0◦

then M = 0, as it should (all of the final energy is kinetic; we simply have a photon with

twice the energy).

3. Increase in mass

In the lab frame, the energy of the resulting object is γM + m, and the momentum
is still γMV . The mass of the object is therefore

M ′ =
√

(γM + m)2 − (γMV )2 =
√

M2 + 2γMm + m2 . (11.91)

The m2 term is negligible compared to the other two terms, so we may approximate
M ′ as

M ′ ≈ M

√
1 +

2γm

M
≈ M

(
1 +

γm

M

)
= M + γm, (11.92)

where we have used the Taylor series,
√

1 + ε ≈ 1 + ε/2. Therefore, the increase in
mass is γ times the mass of the stationary object. (This increase must be greater than
the nonrelativistic answer of “m”, because heat is generated during the collision, and
this heat shows up as mass in the final object.)

Remark: The γm result is quite clear if we work in the frame where M is initially at rest.
In this frame, the mass m comes flying in with energy γm, and essentially all of this energy
shows up as mass in the final object. That is, essentially none of it shows up as overall
kinetic energy of the object.

This is a general result. Stationary large objects pick up negligible kinetic energy when hit

by small objects. This is true because the speed of the large object is proportional to m/M ,

by momentum conservation (there’s a factor of γ if things are relativistic), so the kinetic

energy goes like Mv2 ∝ M(m/M)2 ≈ 0, if M À m. In other words, the smallness of v wins

out over the largeness of M . When a snowball hits a tree, all of the initial energy goes into

heat to melt the snowball; (essentially) none of it goes into changing the kinetic energy of

the earth. ♣

4. Compton scattering

The 4-momenta before the collision are (see Fig. 11.30)

m

m

θ

λ

λ

'
x

y

Figure 11.30

Pγ =
(

hc

λ
,
hc

λ
, 0, 0

)
, Pm = (mc2, 0, 0, 0). (11.93)

The 4-momenta after the collision are

P ′γ =
(

hc

λ′
,
hc

λ′
cos θ,

hc

λ′
sin θ, 0

)
, P ′m = (we won′t need this). (11.94)
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If we wanted to, we could write P ′m in terms of its momentum and scattering angle.
But the nice thing about the following method is that we don’t need to introduce
these quantities which we’re not interested in.
Conservation of energy and momentum give Pγ + Pm = P ′γ + P ′m. Therefore,

(Pγ + Pm − P ′γ)2 = P ′2m

=⇒ P 2
γ + P 2

m + P ′2γ + 2Pm(Pγ − P ′γ)− 2PγP ′γ = P ′2m

=⇒ 0 + m2c4 + 0 + 2mc2

(
hc

λ
− hc

λ′

)
− 2

hc

λ

hc

λ′
(1− cos θ) = m2c4. (11.95)

Multiplying through by λλ′/(hmc3) gives the desired result,

λ′ = λ +
h

mc
(1− cos θ). (11.96)

The nice thing about this solution is that all the unknown garbage in P ′m disappeared
when we squared it.

If θ ≈ 0 (that is, not much scattering), then λ′ ≈ λ, as expected.

If θ = π (that is, backward scattering) and additionally λ ¿ h/mc (that is, mc2 ¿ hc/λ =
Eγ , so the photon’s energy is much larger than the electron’s rest energy), then λ′ = 2h/mc,
so

E′
γ =

hc

λ′
≈ hc

2h
mc

=
1

2
mc2. (11.97)

Therefore, the photon bounces back with an essentially fixed E′
γ , independent of the initial

Eγ (as long as Eγ is large enough). This isn’t all that obvious.

5. Bouncing backwards
The 4-momenta before the collision are

PM = (E, p, 0, 0), Pm = (m, 0, 0, 0), (11.98)

where p =
√

E2 −M2. The 4-momenta after the collision are

P ′M = (E′, p′, 0, 0), P ′m = (we won′t need this), (11.99)

where p′ =
√

E′2 −M2. If we wanted to, we could write P ′m in terms of its momentum.
But we don’t need to introduce it. Conservation of energy and momentum give
PM + Pm = P ′M + P ′m. Therefore,

(PM + Pm − P ′M )2 = P ′2m

=⇒ P 2
M + P 2

m + P ′2M + 2Pm(PM − P ′M )− 2PMP ′M = P ′2m (11.100)
=⇒ M2 + m2 + M2 + 2m(E − E′)− 2(EE′ − pp′) = m2

=⇒ M2 − EE′ + m(E − E′) = pp′

=⇒
(
(M2 − EE′) + m(E − E′)

)2

=
(√

E2 −M2
√

E′2 −M2
)2

=⇒ M2(E2 − 2EE′ + E′2) + 2(M2 − EE′)m(E − E′) + m2(E − E′)2 = 0.

As claimed, E′ = E is a root of this equation. This is true because E′ = E and p′ = p
certainly satisfy conservation of energy and momentum with the initial conditions, by
definition. Dividing through by (E − E′) gives

M2(E − E′) + 2m(M2 − EE′) + m2(E − E′) = 0. (11.101)
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Solving for E′ gives the desired result,

E′ =
2mM2 + E(m2 + M2)

m2 + M2 + 2Em
. (11.102)

We can double-check a few limits:

(a) E ≈ M (barely moving): then E′ ≈ M , because M is still barely moving.

(b) m À E (brick wall): then E′ ≈ E, because the heavy mass m picks up essentially no
energy.

(c) M À m: then E′ ≈ E, because it’s essentially like m is not there. Actually, this only
holds if E isn’t too big; more precisely, we need Em ¿ M2.

(d) M = m: then E′ = M , because M stops and m picks up all the energy that M had.

(e) E À m À M : then E′ ≈ m/2. This isn’t obvious, but it’s similar to an analogous
limit in the Compton scattering in Problem 4.

6. Two-body decay
B and C have equal and opposite momenta. Therefore,

E2
B −M2

B = p2 = E2
C −M2

C . (11.103)

Also, conservation of energy gives

EB + EC = MA. (11.104)

Solving the two previous equations for EB and EC gives (using the shorthand a ≡ MA,
etc.)

EB =
a2 + b2 − c2

2a
, and EC =

a2 + c2 − b2

2a
. (11.105)

Eq. (11.103) then gives the momentum of the particles as

p =
√

a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

2a
. (11.106)

Remark: It turns out that the quantity under the radical may be factored into

(a + b + c)(a + b− c)(a− b + c)(a− b− c). (11.107)

This makes it clear that if a = b + c, then p = 0, because there is no leftover energy for the

particles to be able to move. ♣
7. Threshold energy

The initial 4-momenta are

(E, p, 0, 0), and (m, 0, 0, 0), (11.108)

where p =
√

E2 −m2. Therefore, the final 4-momentum is (E + m, p, 0, 0). The
quantity (E + m)2 − p2 is an invariant, and it equals the square of the energy in
the CM frame. At threshold, there is no relative motion among the final N particles
(because there is no leftover energy for such motion; see the remark below). So the
energy in the CM frame is simply the sum of the rest energies, or Nm. We therefore
have

(E + m)2 − (E2 −m2) = (Nm)2 =⇒ E =
(

N2

2
− 1

)
m. (11.109)
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Note that E ∝ N2, for large N .

Remark: Let’s justify rigorously that the final particles should travel as a blob (that is,
with no relative motion). Using the invariance of E2 − p2, and the fact that pCM = 0, we
have

(
Elab

f

)2 −
(
plab
f

)2
=

(
ECM

f

)2 −
(
pCM
f

)2

=⇒ (E + m)2 −
(√

E2 −m2
)2

=
(
ECM

f

)2 − 0

=⇒ 2Em + 2m2 =
(
ECM

f

)2
. (11.110)

Therefore, minimizing E is equivalent to minimizing ECM
f . But ECM

f is clearly minimized

when all the final particles are at rest in the CM frame (so there is no kinetic energy added

to the rest energy). The minimum E is therefore achieved when there is no relative motion

among the final particles in the CM frame, and hence in any other frame. ♣
8. Relativistic harmonic oscillator

F = dp/dt gives −mω2x = d(mγv)/dt. Using eq. (11.44), we have

−ω2x = γ3 dv

dt
. (11.111)

We must somehow solve this differential equation. A helpful thing to do is to multiply
both sides by v to obtain −ω2xẋ = γ3vv̇. The right-hand side of this is simply dγ/dt,
as you can check. Integration then gives −ω2x2/2 + C = γ, where C is a constant of
integration. We know that γ = 1 when x = b, so we find

γ = 1 +
ω2

2c2
(b2 − x2), (11.112)

where we have put the c’s back in to make the units right.
The period is given by

T = 4
∫ b

0

dx

v
. (11.113)

But γ ≡ 1/
√

1− v2/c2, and so v = c
√

γ2 − 1/γ. Therefore,

T =
4
c

∫ b

0

γ√
γ2 − 1

dx. (11.114)

Remark: In the limit ωb ¿ c (so that γ ≈ 1, from eq. (11.112); that is, the speed is
always small), we must recover the Newtonian limit. Indeed, to lowest nontrivial order,
γ2 ≈ 1 + (ω2/c2)(b2 − x2), and so

T ≈ 4

c

∫ b

0

dx

(ω/c)
√

b2 − x2
. (11.115)

This is the correct result, because conservation of energy gives v2 = ω2(b2 − x2) for a

nonrelativistic spring. ♣
9. System of masses

Let the speed of the stick go from 0 to ε, where ε ¿ v. Then the final speeds of the two
masses are obtained by relativistically adding and subtracting ε from v. (Assume that
the time involved is small, so that the masses are still essentially moving horizontally.)
Repeating the derivation leading to eq. (11.17), we see that the final momenta of the
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two masses have magnitudes γvγε(v ± ε)m. But since ε is small, we may set γε ≈ 1,
to first order.
Therefore, the forward-moving mass now has momentum γv(v+ε)m, and the backward-
moving mass now has momentum −γv(v − ε)m. The net increase in momentum is
thus (with γv ≡ γ) ∆p = 2γmε. Hence,

F ≡ ∆p

∆t
= 2γm

ε

∆t
≡ 2γma = Ma. (11.116)

10. Relativistic rocket
The relation between m and v obtained in eq. (11.60) is independent of the rate at
which mass is converted to photons. We now assume a certain rate, in order to obtain
a relation between v and t.
In the frame of the rocket, we have dm/dτ = −σ. From the usual time dilation effect,
we then have dm/dt = −σ/γ in the ground frame, because the ground frame sees the
rocket’s clocks run slow (that is, dt = γ dτ).
Differentiating eq. (11.60), we have

dm =
−M dv

(1 + v)
√

1− v2
. (11.117)

Using dm = −(σ/γ)dt, this becomes
∫ t

0

σ

M
dt =

∫ v

0

dv

(1 + v)(1− v2)
. (11.118)

We could simply use a computer to do this dv integral, but let’s do it from scratch.
Using a few partial-fraction tricks, we have

∫
dv

(1 + v)(1− v2)
=

∫
dv

(1 + v)(1− v)(1 + v)

=
1
2

∫ (
1

1 + v
+

1
1− v

)
dv

1 + v

=
1
2

∫
dv

(1 + v)2
+

1
4

∫ (
1

1 + v
+

1
1− v

)
dv

= − 1
2(1 + v)

+
1
4

ln
(

1 + v

1− v

)
. (11.119)

Equation (11.118) therefore gives

σt

M
=

1
2
− 1

2(1 + v)
+

1
4

ln
(

1 + v

1− v

)
. (11.120)

Remarks: If v ¿ 1 (or rather, if v ¿ c), then we may Taylor-expand the quantities in
eq. (11.120) to obtain σt/M ≈ v. This may be rewritten as σ ≈ M(v/t) ≡ Ma. But σ is
simply the force acting on the rocket (or rather σc, to make the units correct), because this
is the change in momentum of the photons. We therefore obtain the expected nonrelativistic
F = ma equation.

If v = 1 − ε, where ε is very small (that is, if v is very close to c), then we can make

approximations in eq. (11.120) to obtain ε ≈ 2e/e4σt/M . We see that the difference between

v and 1 decreases exponentially with t. ♣
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11. Relativistic dustpan I
This problem is essentially the same as Problem 3.
Let M be the mass of the dustpan-plus-dust-inside system (which we will label “S”)
when its speed is v. After a small time dt in the lab frame, S has moved a distance
v dt, so it has basically collided with an infinitesimal mass λv dt. Its energy therefore
increases to γM + λv dt. Its momentum is still γMv, so its mass is now

M ′ =
√

(γM + λv dt)2 − (γMv)2 ≈
√

M2 + 2γMλv dt , (11.121)

where we have dropped the second-order dt2 terms. Using the Taylor series
√

1 + ε ≈
1 + ε/2, we may approximate M ′ as

M ′ ≈ M

√
1 +

2γλv dt

M
≈ M

(
1 +

γλv dt

M

)
= M + γλv dt. (11.122)

The rate of increase in S’s mass is therefore γλv. (This increase must certainly be
greater than the nonrelativistic answer of “λv”, because heat is generated during the
collision, and this heat shows up as mass in the final object.)

Remarks: This result is quite clear if we work in the frame where S is at rest. In this frame,
a mass λv dt comes flying in with energy γλv dt, and essentially all of this energy shows up
as mass (heat) in the final object. That is, essentially none of it shows up as overall kinetic
energy of the object, which is a general result when a small object hits a stationary large
object.

Note that the rate at which the mass increases, as measured in S’s frame, is γ2λv, due to

time dilation. (The dust-entering-dustpan events happen at the same location in the dustpan

frame, so we have indeed put the extra γ factor in the correct place.) Alternatively, you can

view things in terms of length contraction. S sees the dust contracted, so its density is

increased to γλ. ♣
12. Relativistic dustpan II

The initial momentum is γV MV ≡ P . There are no external forces, so the momentum
of the dustpan-plus-dust-inside system (denoted by “S”) always equals P . That is,
γmv = P , where m and v are the mass and speed of S at later times.
Let’s find v(x) first. The energy of S, namely γm, increases due to the acquisition of
new dust. Therefore, d(γm) = λ dx, which we can write as

d

(
P

v

)
= λ dx. (11.123)

Integrating this, and using the fact that the initial speed is V , gives P/v−P/V = λx.
Therefore,

v(x) =
V

1 + V λx
P

. (11.124)

Note that for large x, this approaches P/(λx). This makes sense, because the mass
of S is essentially equal to λx, and it is moving at a slow, nonrelativistic speed.
To find v(t), write the dx in eq. (11.123) as v dt to obtain (−P/v2) dv = λv dt. Hence,

−
∫ v

V

P dv

v3
=

∫ t

0

λ dt =⇒ P

v2
− P

V 2
= 2λt

=⇒ v(t) =
V√

1 + 2λV 2t
P

. (11.125)
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At this point, there are various ways to find x(t). The simplest one is to just integrate
eq. (11.125). The result is

x(t) =
P

V λ

(√
1 +

2V 2λt

P
− 1

)
. (11.126)

You can show that this reduces to x = V t for small t, as it should. For large t, x has
the interesting property of being proportional to

√
t.

13. Relativistic dustpan III

Let S denote the dustpan-plus-dust-inside system at a given time, and consider a
small bit of dust (call this subsystem s) that enters the dustpan. In S’s frame, the
density of the dust is γλ, due to length contraction. Therefore, in a time dτ (where τ
is the time in the dustpan frame), a little s system of dust with mass γλv dτ crashes
into S and loses its (negative) momentum of −(γλv dτ)(γv) = −γ2v2λ dτ . The force
on s is therefore +γ2v2λ. The desired force on S is equal and opposite to this, so

F = −γ2v2λ. (11.127)

Now consider the lab frame. In a time dt (where t is the time in the lab frame), a
little s system of dust with mass λv dt gets picked up by the dustpan. What is the
change in momentum of s? It is tempting to say that it is (λv dt)(γv), but this would
lead to a force of −γv2λ on the dustpan, which doesn’t agree with the result we found
above in the dustpan frame. This would be a problem, because longitudinal forces
should be the same in different frames.
The key point to realize is that the mass of whatever is moving increases at a rate
γλv, and not λv (see Problem 11). We therefore see that the change in momentum of
the additional moving mass is (γλv dt)(γv) = γ2v2λ dt. The original moving system
S therefore loses this much momentum, and so the force on it is F = −γ2v2λ, in
agreement with the result in the dustpan frame.

14. Relativistic cart I

Ground frame (your frame): Using reasoning similar to that in Problem 3 or
Problem 11, we see that the mass of the cart-plus-sand-inside system increases at a
rate γσ. Therefore, its momentum increases at a rate

dP

dt
= γ(γσ)v = γ2σv. (11.128)

This is the force you exert on the cart, so it is also the force the ground exerts on
your feet (because the net force on you is zero).

Cart frame: The sand-entering-cart events happen at the same location in the
ground frame, so time dilation says that the sand enters the cart at a slower rate in
the cart frame; that is, at a rate σ/γ. The sand flies in at speed v, and then eventually
comes at rest on the cart, so its momentum decreases at a rate γ(σ/γ)v = σv. This
is the force your hand applies to the cart.
If this were the only change in momentum in the problem, then we would be have a
problem, because the force on your feet would be σv in the cart frame, whereas we
found above that it is γ2σv in the ground frame. This would contradict the fact that
longitudinal forces are the same in different frames. What is the resolution to this
apparent paradox?
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The resolution is that while you are pushing on the cart, your mass is decreasing. You
are moving with speed v in the cart frame, and mass is continually being transferred
from you (who are moving) to the cart (which is at rest). This is the missing change
in momentum we need. Let’s be quantitative about this.

Go back to the ground frame for a moment. We found above that the mass the
cart-plus-sand-inside system (call this “C”) increases at rate γσ in the ground frame.
Therefore, the energy of C increases at a rate γ(γσ) in the ground frame. The sand
provides σ of this energy, so you must provide the remaining (γ2−1)σ part. Therefore,
since you are losing energy at this rate, you must also be losing mass at this rate in
the ground frame (because you are at rest there).

Now go back to the cart frame. Due to time dilation, you lose mass at a rate of only
(γ2 − 1)σ/γ. This mass goes from moving at speed v (that is, along with you), to
speed zero (that is, at rest on the cart). Therefore, the rate of decrease in momentum
of this mass is γ

(
(γ2 − 1)σ/γ

)
v = (γ2 − 1)σv.

Adding this result to the σv result due to the sand, we see that the total rate of
decrease in momentum is γ2σv. This is therefore the force that the ground applies to
your feet, in agreement with the calculation in the ground frame.

15. Relativistic cart II

Ground frame: Using reasoning similar to that in Problem 3 or Problem 11, we see
that the mass of the cart-plus-sand-inside system increases at a rate γσ. Therefore,
its momentum increases at a rate γ(γσ)v = γ2σv.

However, this is not the force that your hand exerts on the cart. The reason is that
the sand enters the cart at locations that are receding from your hand, so your hand
cannot immediately be aware of the additional need for momentum. No matter how
rigid the cart is, it can’t transmit information faster than c. In a sense, there is a sort
of Doppler effect going on, and your hand only needs to be responsible for a certain
fraction of the momentum increase. Let’s be quantitative about this.

Consider two grains of sand that enter the cart a time t apart. What is the difference
between the two times that your hand becomes aware that the grains have entered
the cart? Assuming maximal rigidity (that is, assuming that signals propagate along
the cart at speed c), then the relative speed (as measured by someone on the ground)
of the signals and your hand is c − v. The distance between the two signals is ct.
Therefore, they arrive at your hand separated by a time of ct/(c−v). In other words,
the rate at which you feel sand entering the cart is (c − v)/c times the given σ rate.
This is the factor by which we must multiply the naive γ2σv result for the force we
found above. The force you must apply is therefore

F =
(
1− v

c

)
γ2σv =

σv

1 + v
. (11.129)

Cart frame (your frame): The sand-entering-cart events happen at the same
location in the ground frame, so time dilation says that the sand enters the cart at
a slower rate in the cart frame; that is, at a rate σ/γ. The sand flies in at speed v,
and then eventually comes to rest on the cart, so its momentum decreases at a rate
γ(σ/γ)v = σv.

But again, this is not the force that your hand exerts on the cart. As before, the sand
enters the cart at a location far from your hand, so your hand cannot immediately be
aware of the additional need for momentum. Let’s be quantitative about this.
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Consider two grains of sand that enter the cart a time t apart. What is the difference
between the two times that your hand becomes aware that the grains have entered
the cart? Assuming maximal rigidity (that is, assuming that signals propagate along
the cart at speed c), then the relative speed (as measured by someone on the cart) of
the signals and your hand is c (because you are at rest). The distance between the
two signals is ct + vt, because the sand source is moving away from you at speed v.
Therefore, the signals arrive at your hand separated by a time of (c + v)t/c. In other
words, the rate at which you feel sand entering the cart is c/(c + v) times the σ/γ
rate found above. This is the factor by which we must multiply the naive σv result
for the force we found above. The force you must apply is therefore

F =
(

1
1 + v/c

)
σv =

σv

1 + v
, (11.130)

in agreement with eq. (11.129).
In a nutshell, the two naive results in the two frames, γ2σv and σv, differ by two
factors of γ. The ratio of the two “Doppler-effect” factors (which arose from the
impossibility of absolute rigidity) precisely remedies this discrepancy.

16. Different frames

(a) The energy of the resulting blob is 2m + T`. Since the blob is at rest, we have

M = 2m + T`. (11.131)

(b) Let the new frame be S. Let the original frame be S′. The critical point to
realize is that in frame S the left mass begins to accelerate before the right mass
does. This is due to the loss of simultaneity between the frames. Note that the
longitudinal force is the same in the two frames, so the masses still feel a tension
T in frame S.
Consider the two events when the two masses start to move. Let the left mass
and right mass start moving at positions xl and xr in S. The Lorentz transfor-
mation ∆x = γ(∆x′ + v∆t′) tells us that xr − xl = γ`, because ∆x′ = ` and
∆t′ = 0 for these events.
Let the masses collide at position xc in S. Then the gain in energy of the left
mass is T (xc − xl), and the gain in energy of the right mass is (−T )(xc − xr)
(which is negative if xc > xr). The gain in the sum of the energies is therefore

∆E = T (xc − xl) + (−T )(xc − xr) = T (xr − xl) = Tγ`. (11.132)

The initial sum of energies was 2γm, so the final energy is

E = 2γm + γT` = γM, (11.133)

as desired.

17. Splitting mass

We’ll calculate the times for the two parts of the process to occur.
The energy of the mass right before it splits is Eb = M + T (`/2), so the momentum
is pb =

√
E2

b −M2 =
√

MT` + T 2`2/4. Using F = dp/dt, the time for the first part
of the process is

t1 =
1
T

√
MT` + T 2`2/4 . (11.134)
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The momentum of the front half of the mass immediately after it splits is pa = pb/2 =
(1/2)

√
MT` + T 2`2/4. The energy at the wall is Ew = Eb/2+T (`/2) = M/2+3T`/4,

so the momentum at the wall is pw =
√

E2
w − (M/2)2 = (1/2)

√
3MT` + 9T 2`2/4.

The change in momentum during the second part of the process is therefore ∆p =
pw−pa = (1/2)

√
3MT` + 9T 2`2/4− (1/2)

√
MT` + T 2`2/4. The time for the second

part is thus

t2 =
1

2T

(√
3MT` + 9T 2`2/4−

√
MT` + T 2`2/4

)
. (11.135)

The total time is t1 + t2, which simply changes the minus sign in the above expression
to a plus sign.

18. Relativistic leaky bucket

(a) Let the wall be at x = 0, and let the initial position be at x = `. Consider a small
interval during which the bucket moves from x to x+dx (where dx is negative).
The bucket’s energy changes by (−T ) dx due to the string, and it also changes
by a fraction dx/x, due to the leaking. Therefore, dE = (−T ) dx + E dx/x, or

dE

dx
= −T +

E

x
. (11.136)

In solving this differential equation, it is convenient to introduce the variable
y = E/x. Then E′ = xy′+y, where a prime denotes differentiation with respect
to x. Eq. (11.136) then becomes xy′ = −T , or

dy =
−Tdx

x
. (11.137)

Integration gives y = −T ln x+C, which we may write as y = −T ln(x/`)+B, in
order to have a dimensionless argument in the log. Since E = xy, we therefore
have

E = Bx− Tx ln(x/`). (11.138)

The reasoning up to this point is valid for both the total energy and the kinetic
energy. Let’s now look at each of these cases.

• Total energy: Eq. (11.138) gives

E = M(x/`)− Tx ln(x/`), (11.139)

where the constant of integration, B, has been chosen so that E = M when
x = `. To find the maximum of E, it is more convenient to work with the
fraction z ≡ x/`, in terms of which E = Mz − T`z ln z. Setting dE/dz
equal to zero gives

ln z =
M

T`
− 1 =⇒ Emax =

T`

e
eM/T`. (11.140)

The fraction z must satisfy z ≤ 1, so we must have ln z ≤ 0. Therefore, a
solution for z exists only for M ≤ T`. If M ≥ T`, then the energy decreases
all the way to the wall.

If M is slightly less then T`, then z is slightly less than 1, so E quickly achieves a
maximum of slightly more than M , then decreases for the rest of the way to the
wall.

If M ¿ T`, then E achieves its maximum at z ≈ 1/e, where it has the value

T`/e.
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• Kinetic energy: Eq. (11.138) gives

KE = −Tx ln(x/`), (11.141)

where the constant of integration, B, has been chosen so that KE = 0
when x = `. Equivalently, E −KE must equal the mass M(x/`). In terms
of the fraction z ≡ x/`, we have KE = −T`z ln z. Setting d(KE)/dz equal
to zero gives

z =
1
e

=⇒ KEmax =
T`

e
, (11.142)

which is independent of M . Since this result is independent of M , it must
hold in the nonrelativistic limit. And indeed, the analogous “Leaky-bucket”
problem in Chapter 4 (Problem 4.16) gave the same result.

(b) Eq. (11.139) gives, with z ≡ x/`,

p =
√

E2 − (Mz)2 =
√

(Mz − T`z ln z)2 − (Mz)2

=
√
−2MT`z2 ln z + T 2`2z2 ln2 z . (11.143)

Setting the derivative equal to zero gives T` ln2 z + (T` − 2M) ln z − M = 0.
The maximum momentum therefore occurs at

ln z =
2M − T`−√T 2`2 + 4M2

2T`
. (11.144)

We have ignored the other root, because it gives ln z > 0.

If M ¿ T`, then the maximum p occurs at z ≈ 1/e. In this case, the bucket immedi-
ately becomes relativistic, so we have E ≈ pc. Therefore, both E and p should achieve
their maxima at the same place. This agrees with the result for E above.

If M À T`, then the maximum p occurs at z ≈ 1/
√

e. In this case, the bucket is

nonrelativistic, so the result should agree with the analogous “Leaky-bucket” problem

in Chapter 4 (Problem 4.16), which it does.

19. Relativistic bucket

(a) The mass’s energy just before it hits the wall is E = m + T`. Therefore, the
momentum just before it hits the wall is p =

√
E2 −m2 =

√
2mT` + T 2`2.

F = ∆p/∆t then gives (using the fact that the tension is constant)

∆t =
∆p

F
=
√

2mT` + T 2`2

T
. (11.145)

If m ¿ T`, then ∆t ≈ ` (or `/c in normal units), which is correct, because the mass
essentially travels at speed c.

If m À T`, then ∆t ≈
√

2m`/T . This is the nonrelativistic limit, and it agrees with

the result obtained from the familiar ` = at2/2, where a = T/m is the acceleration.

(b) Straightforward method: The energy of the blob right before it hits the wall
is Ew = 2m + 2T`. If we can find the mass, M , of the blob, then we can use
p =

√
E2 −M2 to get the momentum, and then use ∆t = ∆p/F to get the

time.20

20Note that although the tension T acts on two different things (the mass m initially, and then
the blob), it is valid to use the total ∆p to obtain the total time ∆t via ∆t = ∆p/F , simply because
we could break up the ∆p into its two parts, and then find the two partial times, and then add
them back together to get the total ∆t.
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The momentum right before the collision is pb =
√

2mT` + T 2`2, and this is
also the momentum of the blob right after the collision, pa.
The energy of the blob right after the collision is Ea = 2m + T`. So the mass of
the blob after the collision is M =

√
E2

a − p2
a =

√
4m2 + 2mT`.

Therefore, the momentum at the wall is pw =
√

E2
w −M2 =

√
6mT` + 4T 2`2,

and hence

∆t =
∆p

F
=
√

6mT` + 4T 2`2

T
. (11.146)

Note that if m = 0 then ∆t = 2`, as it should.

Better method: In the notation in the footnote in the statement of the problem,
the change in p2 from the start to just before the collision is ∆(p2) = E2

2 −E2
1 .

This is true because

E2
1 −m2 = p2

1, and E2
2 −m2 = p2

2, (11.147)

and since m is the same throughout the first half of the process, we have ∆(E2) =
∆(p2).
Likewise, the change in p2 during the second half of the process is ∆(p2) =
E2

4 − E2
3 , because

E2
3 −M2 = p2

3, and E2
4 −M2 = p2

4, (11.148)

and since M is the same throughout the second half of the process,21 we have
∆(E2) = ∆(p2).
The total change in p2 is the sum of the above two changes, so the final p2 is

p2 = (E2
2 − E2

1) + (E2
4 − E2

3)

=
(
(m + T`)2 −m2

)
+

(
(2m + 2T`)2 − (2m + T`)2

)

= 6mT` + 4T 2`2, (11.149)

as in eq. (11.146). The first solution above basically performs the same calcu-
lation, but in a more obscure manner.

(c) The reasoning in part (b) tells us that the final p2 equals the sum of the ∆(E2)
terms over the N parts of the process. So we have, using an indexing notation
analogous to that in part (b),

p2 =
N∑

k=1

(
E2

2k − E2
2k−1

)

=
∑ (

(km + kT`)2 − (
km + (k − 1)T`

)2
)

=
∑ (

2kmT` +
(
k2 − (k − 1)2

)
T 2`2

)

= N(N + 1)mT` + N2T 2`2. (11.150)

Therefore,

∆t =
∆p

F
=

√
N(N + 1)mT` + N2T 2`2

T
. (11.151)

This checks with the results from parts (a) and (b).

21M happens to be
√

4m2 + 2mT`, but the nice thing about this solution is that we don’t need
to know this. All we need to know is that it is constant.
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(d) We want to take the limit N → ∞, ` → 0, m → 0, with the restrictions that
N` = L and Nm = M . Written in terms of M and L, the result in part (c) is

∆t =

√
(1 + 1/N)MTL + T 2L2

T
−→

√
MTL + T 2L2

T
, (11.152)

as N →∞. Note that this time equals the time is takes for one particle of mass
m = M/2 to reach the wall, from part (a).
The mass, Mf , of the final blob at the wall is

Mf =
√

E2
w − p2

w =
√

(M + TL)2 − (MTL + T 2L2)

=
√

M2 + MTL . (11.153)

If TL ¿ M , then Mf ≈ M , which makes sense. If M ¿ TL, then Mf ≈√
MTL, so Mf is the geometric mean between the given mass and the energy

stored in the string, which isn’t entirely obvious.
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