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The general goal of classical mechanics is to determine what happens to a given set
of objects in a given physical situation. In order to figure this out, we need to know
what makes the objects move the way they do. There are two main ways of going
about this task. The first way, which you are undoubtedly familiar with, involves
Newton’s laws. This will be the subject of the present chapter. The second way,
which is the more advanced one, is the Lagrangian method. This will be the subject
of Chapter 5.

It should be noted that each of these methods is perfectly sufficient for solving
any problem. They both produce the same information in the end, but they are
based on vastly different principles. We’ll talk more about this is Chapter 5.

2.1 Newton’s Laws

Newton published his three laws in 1687 in his Principia Mathematica. The laws are
fairly intuitive, although it seems a bit strange to attach the adjective “intuitive”
to a set of statements that took millennia for humans to write down. The laws may
be stated as follows.

• First Law: A body moves with constant velocity (which may be zero) unless
acted on by a force.

• Second Law: The time rate of change of the momentum of a body equals
the force acting on the body.

• Third Law: The forces two bodies apply to each other are equal in magnitude
and opposite in direction.

We could discuss for days on end the degree to which these statements are
physical laws, and the degree to which they are definitions. Sir Arthur Eddington
once made the unflattering comment that the first law essentially says that “every
particle continues in its state of rest or uniform motion in a straight line except
insofar that it doesn’t.” Although Newton’s laws might seem somewhat vacuous at
first glance, there is actually a bit more content to them than Eddington’s comment
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implies. Let’s look at each in turn. The discussion will be brief, because we have to
save time for other things in this book that we really do want to discuss for days on
end.

First Law

One thing this law does is give a definition of zero force.
Another thing it does is give a definition of an inertial frame, which is defined

simply as a reference frame in which the first law holds. Since the term “velocity”
is used, we have to state what frame of reference we are measuring the velocity with
respect to. The first law does not hold in an arbitrary frame. For example, it fails in
the frame of a spinning turntable.1 Intuitively, an inertial frame is one that moves
at constant speed. But this is ambiguous, because we have to say what the frame is
moving at constant speed with respect to. At any rate, an inertial frame is simply
defined as the special type of frame where the first law holds.

So, what we now have are two intertwined definitions of “force” and “inertial
frame.” Not much physical content here. But, however sparse in content the law is,
it still holds for all particles. So if we have a frame in which one free particle moves
with constant velocity, than all free particles move with constant velocity. This is a
statement with content.

Second Law

One thing this law does is give a definition of nonzero force. Momentum is defined2

to be mv. If m is constant,3 then the second law says that

F = ma, (2.1)

where a ≡ dv/dt. This law holds only in an inertial frame, which was defined by
the first law.

For things moving free or at rest,
Observe what the first law does best.
It defines a key frame,
“Inertial” by name,
Where the second law then is expressed.

So far, the second law merely gives a definition of F. But the meaningful state-
ment arises when we invoke the fact that the law holds for all particles. If the same
force (for example, the same spring stretched by the same amount) acts on two

1It is, however, possible to modify things so that Newton’s laws hold in such a frame, but we’ll
save this discussion for Chapter 9.

2We’re doing everything nonrelativistically here, of course. Chapter 11 gives the relativistic
modification of the mv expression.

3We’ll assume in this chapter that m is constant. But don’t worry, we’ll get plenty of practice
with changing mass (in rockets and such) in Chapter 4.
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particles, with masses m1 and m2, then eq. (2.1) says that their accelerations must
be related by

a1

a2
=

m2

m1
. (2.2)

This relation holds regardless of what the common force is. Therefore, once you’ve
used one force to find the relative masses of two objects, then you know what the
ratio of their a’s will be when they are subjected to any other force.

Of course, we haven’t really defined mass yet. But eq. (2.2) gives an experimen-
tal method for determining an object’s mass in terms of a standard (say, 1 kg) mass.
All you have to do is compare its acceleration with that of the standard mass, when
acted on by the same force.

There is also another piece of substance in this law, in that it says F = ma,
instead of, say, F = mv, or F = md3x/dt3. This issue is related to the first law.
F = mv is not viable, because the first law says that it is possible to have a velocity
without a force. And F = md3x/dt3 would make the first law incorrect, because
it would then be true that a particle moves with constant acceleration (instead of
constant velocity) unless acted on by a force.

Note that F = ma is a vector equation, so it is really three equations in one. In
Cartesian coordinates, it says that Fx = max, Fy = may, and Fz = maz.

Third Law

This law essentially postulates that momentum is conserved (that is, not dependent
on time). To see this, note that

dp
dt

=
d(m1v1 + m2v2)

dt
= m1a1 + m2a2

= F1 + F2, (2.3)

where F1 and F2 are the forces acting on m1 and m2, respectively. This demonstrates
that momentum conservation (that is, dp/dt = 0) is equivalent to Newton’s third
law (that is, F1 = −F2.)

There isn’t much left to be defined via this law, so the third law is one of pure
content. It says that if you have two isolated particles interacting through some
force, then their accelerations are opposite in direction and inversely proportional
to their masses.

This third law cannot be a definition, because it’s actually not always valid. It
only holds for forces of the “pushing” and “pulling” type. It fails for the magnetic
force, for example. In that case, momentum is carried off in the electromagnetic
field (so the total momentum of the particles and the field is conserved). But we
won’t deal with fields here. Just particles. So the third law will always hold in any
situation we’re concerned with.
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2.2 Free-body diagrams

The law that allows us to be quantitative is the second law. Given a force, we
can apply F = ma to find the acceleration. And knowing the acceleration, we can
determine the behavior of a given object (that is, where it is and what its velocity is),
provided that we are given the initial position and velocity. This process sometimes
takes a bit of work, but there are two basic types of situations that commonly arise.

• In many problems, all you are given is a physical situation (for example, a
block resting on a plane, strings connecting masses, etc.), and it is up to you
to find all the forces acting on all the objects. These forces generally point in
various directions, so it is easy to lose track of them. It therefore proves useful
to isolate the objects and draw all the forces acting on each of them. This is
the subject of the present section.

• In other problems, you are given the force explicitly as a function of time,
position, or velocity, and the task immediately becomes the mathematical one
of solving the F = ma ≡ mẍ equation (we’ll just deal with one dimension
here). These differential equations can be difficult (or impossible) to solve
exactly. They are the subject of Section 2.3.

Let’s now consider the first of these two types of scenarios, where we are pre-
sented with a physical situation, and where we must determine all the forces in-
volved. The term free-body diagram is used to denote a diagram with all the forces
drawn on a given object. After drawing such a diagram for each object in the setup,
we simply write down all the F = ma equations they imply. The result will be a
system of linear equations in various unknown forces and accelerations, for which
we must then solve. This procedure is best understood through an example.

Example (A plane and masses): Mass M1 is held on a plane with inclination
angle θ, and mass M2 hangs over the side. The two masses are connected by a
massless string which runs over a massless pulley (see Fig. 2.1). The coefficient of

M1
M2

θ

µ

Figure 2.1 kinetic friction between M1 and the plane is µ. M1 is released. Assuming that M2 is
sufficiently large so that M1 gets pulled up the plane, what is the acceleration of the
masses? What is the tension in the string?

Solution: The first thing to do is draw all the forces on the two masses. These are
shown in Fig. 2.2. The forces on M2 are gravity and the tension. The forces on M1

M1
M2

θ

N T 

f

T

g

g

Figure 2.2

are gravity, friction, the tension, and the normal force. Note that the friction force
points down the plane, because we are assuming that M1 moves up the plane.
Having drawn all the forces, we now simply have to write down all the F = ma equa-
tions. When dealing with M1, we could break things up into horizontal and vertical
components, but it is much cleaner to use the components along and perpendicular
to the plane.4 These two components of F = ma, along with the vertical F = ma

4When dealing with inclined planes, one of these two coordinate systems will generally work
much better than the other. Sometimes it’s not clear which one, but if things get messy with one
system, you can always try the other one.
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equation for M2, give

T − f −M1g sin θ = M1a,

N −M1g cos θ = 0,

M2g − T = M2a, (2.4)

where we have used the fact that the two masses accelerate at the same rate (and
we have defined the positive direction for M2 to be downward). We have also used
the fact that tension is the same at both ends of the string, because otherwise there
would be a net force on some part of the string which would then have to undergo
infinite acceleration, because it is massless.
There are four unknowns in eqs. (2.4) (namely T , a, N , and f), but only three
equations. Fortunately, we have a fourth equation: f = µN . Using this in the
second equation above gives f = µM1g cos θ. The first equation then becomes T −
µM1g cos θ −M1g sin θ = M1a. Adding this to the third equation leave us with only
a, so we find

a =
g(M2 − µM1 cos θ −M1 sin θ)

M1 + M2
, =⇒ T =

M1M2g(1 + µ cos θ + sin θ)
M1 + M2

.

(2.5)
Note that in order for M1 to move upward (that is, a > 0), we must have M2 >
M1(µ cos θ + sin θ) . This is clear from looking at the forces along the plane.

Remark: If we had instead assumed that M1 was sufficiently large so that it slides down
the plane, then the friction force would point up the plane, and we would have found, as you
can check,

a =
g(M2 + µM1 cos θ −M1 sin θ)

M1 + M2
, and T =

M1M2g

M1 + M2
(1− µ cos θ + sin θ). (2.6)

In order for M1 to move downward (that is, a < 0), we must have M2 < M1(sin θ− µ cos θ).

Therefore, the range of M2 for which the system doesn’t move is M1(sin θ−µ cos θ) < M2 <

M1(sin θ + µ cos θ). ♣

In problems like the one above, it is clear what things you should pick as the
objects on which you’re going to draw forces. But in other problems, where there are
various different subsystems you can choose, you must be careful to include all the
relevant forces on a given subsystem. Which subsystems you want to pick depends
on what quantities you’re trying to find. Consider the following example.

Example (Platform and pulley): A person stands on a platform-and-pulley
system, as shown in Fig. 2.3. The masses of the platform, person, and pulley5 are m

M

a

µ

Figure 2.3

M , m, and µ, respectively.6 The rope is massless. Let the person pull up on the rope
so that she has acceleration a upwards.7

5Assume that the pulley’s mass is concentrated at its center, so that we don’t have to worry
about any rotational dynamics (the subject of Chapter 7).

6My apologies for using µ as a mass here, since it usually denotes a coefficient of friction. Alas,
there are only so many symbols for “m”.

7Assume that the platform is somehow constrained to stay level, perhaps by having it run along
some rails.
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(a) What is the tension in the rope?
(b) What is the normal force between the person and the platform? What is the

tension in the rod connecting the pulley to the platform?

Solution:

(a) To find the tension in the rope, we simply want to let our subsystem be the
whole system (except the ceiling). If we imagine putting the system in a black
box (to emphasize the fact that we don’t care about any internal forces within
the system), then the forces we see “protruding” from the box are the three
weights (Mg, mg, and µg) downward, and the tension T upward. Applying
F = ma to the whole system gives

T − (M +m+µ)g = (M +m+µ)a =⇒ T = (M +m+µ)(g+a). (2.7)

(b) To find the normal force, N , between the person and the platform, and also the
tension, f , in the rod connecting the pulley to the platform, it is not sufficient
to consider the system as a whole. We must consider subsystems.

• Let’s apply F = ma to the person. The forces acting on the person are
gravity, the normal force from the platform, and the tension from the rope
(pulling downward on her hand). Therefore, we have

N − T −mg = ma. (2.8)

• Now apply F = ma to the platform. The forces acting on the platform are
gravity, the normal force from the person, and the force upward from the
rod. Therefore, we have

f −N −Mg = Ma. (2.9)

• Now apply F = ma to the pulley. The forces acting on the pulley are
gravity, the force downward from the rod, and twice the tension in the rope
(because it pulls up on both sides). Therefore, we have

2T − f − µg = µa. (2.10)

Note that if we add up the three previous equations, we obtain the F = ma
equation in eq. (2.7), as should be the case, because the whole system is the
sum of the three above subsystems. Eqs. (2.8) – (2.10) are three equations in
the three unknowns (T , N , and f). Their sum yields the T in (2.7), and then
eqs. (2.8) and (2.10) give, respectively (as you can show),

N = (M + 2m + µ)(g + a), and f = (2M + 2m + µ)(g + a). (2.11)

Remark: You can also obtain these results by considering subsystems different from
the ones we chose above. For example, you can choose the pulley-plus-platform sub-
system, etc. But no matter how you choose to break up the system, you will need
to produce three independent F = ma statements in order to solve for the three
unknowns, T , N , and f .

In problems like this one, it is easy to forget to include one of the forces, such as the

second T in eq. (2.10). The safest thing to do is to isolate each subsystem, draw a box

around it, and then draw all the forces that “protrude” from the box. Fig. 2.4 shows

f

TT

µg

Figure 2.4

the free-body diagram for the subsystem of the pulley. ♣
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Another class of problems, similar to the previous example, goes by the name of
Atwood’s machines. An Atwood’s machine is simply the name for any system that
consists of a combination of masses, strings, and pulleys. In general, the pulleys and
strings can have mass, but we’ll just deal with massless ones in this chapter.

We’ll do one example here, but additional (and stranger) setups are given in the
exercises and problems for this chapter. As we’ll see below, there are two basic steps
in solving an Atwood’s problem: (1) Write down all the F = ma equations, and
(2) Relate the accelerations of the various masses by noting that the length of the
string doesn’t change (a fact that we’ll call “conservation of string”).

Example (An Atwood’s machine): Consider the pulley system in Fig. 2.5, with
m
1

m2

Figure 2.5

masses m1 and m2. The strings and pulleys are massless. What are the accelerations
of the masses? What is the tension in the string?

Solution: The first thing to note is that the tension, T , is the same everywhere
throughout the massless string, because otherwise there would be infinite acceleration.
It then follows that the tension in the short string connected to m2 is 2T . This is true
because there must be zero net force on the massless right pulley, because otherwise
it would have infinite acceleration. The F = ma equations on the two masses are
therefore

T −m1g = m1a1,

2T −m2g = m2a2. (2.12)

We now have two equations in the three unknowns, a1, a2, and T . So we need one
more equation. This is the “conservation of string” fact, which relates a1 and a2. If
we imagine moving m2 and the right pulley up a distance d, then a length 2d of string
has disappeared from the two parts of the string touching the right pulley. This string
has to go somewhere, so it ends up in the part of the string touching m1. Therefore,
m1 goes down by a distance 2d. In other words, y1 = −2y2 (where y1 and y2 are
measured relative to the initial locations of the masses). Taking two time derivatives
of this statement gives our desired relation between a1 and a2,

a1 = −2a2. (2.13)

Combining this with eqs. (2.12), we can now solve for a1, a2, and T . The result is

a1 = g
2m2 − 4m1

4m1 + m2
, a2 = g

2m1 −m2

4m1 + m2
, T =

3m1m2g

4m1 + m2
. (2.14)

Remark: There are all sorts of limits and special cases that we can check here. A few

are: (1) If m2 = 2m1, then eq. (2.14) gives a1 = a2 = 0, and T = m1g. Everything is

at rest. (2) If m2 À m1, then eq. (2.14) gives a1 = 2g, a2 = −g, and T = 3m1g. In

this case, m2 is essentially in free fall, while m1 gets yanked up with acceleration 2g. The

value of T is exactly what is needed to make the net force on m1 equal to m1(2g), because

T −m1g = 3m1g −m1g = m1(2g). We’ll let you check the case where m1 À m2. ♣
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In the problems for this chapter, you’ll encounter some strange Atwood’s setups.
But no matter how complicated they get, there are only two things you need to
do to solve them, as mentioned above: (1) Write down the F = ma equations for
all the masses (which may involve relating the tensions in various strings), and (2)
relate the accelerations of the masses, using “conservation of string”.

It may seem, with the angst it can bring,
That an Atwood’s machine’s a harsh thing.
But you just need to say
That F is ma,
And use conservation of string!

2.3 Solving differential equations

Let’s now consider the type of problem where we are given the force as a function
of time, position, or velocity, and where our task is to solve the F = ma ≡ mẍ
differential equation to find the position, x(t), as a function of time. In what follows,
we will develop a few techniques for solving differential equations. The ability to
apply these techniques dramatically increases the number of problems we can solve.

In general, the force F can also be a function of higher derivatives of x, in
addition to the quantities t, x, and v ≡ ẋ. But these cases don’t arise much, so
we won’t worry about them. The F = ma differential equation we want to solve is
therefore (we’ll just work in one dimension here)

mẍ = F (x, v, t). (2.15)

In general, this equation cannot be solved exactly for x(t).8 But for most of the
problems we will deal with, it can be solved. The problems we will encounter will
often fall into one of three special cases, namely, where F is a function of t only, or
x only, or v only. In all of these cases, we must invoke the given initial conditions,
x0 ≡ x(t0) and v0 ≡ v(t0), to obtain our final solutions. These initial conditions will
appear in the limits of the integrals in the following discussion.9

Note: You may want to just skim the following page and a half, and then refer
back to it as needed. Don’t try to memorize all the different steps. We present
them only for completeness. The whole point here can basically be summarized by
saying that sometimes you want to write ẍ as dv/dt, and sometimes you want to
write it as v dv/dx (see eq. (2.19)). Then you “simply” have to separate variables
and integrate. We’ll go through the three special cases, and then we’ll do some
examples.

8It can always be solved for x(t) numerically, to any desired accuracy. This is discussed in
Appendix D.

9It is no coincidence that we need two initial conditions to completely specify the solution to
our second-order F = mẍ differential equation. It is a general result (which we’ll just accept here)
that the solution to an nth-order differential equation has n free parameters, which must then be
determined from the initial conditions.
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• F is a function of t only: F = F (t).

Since a = d2x/dt2, we just need to integrate F = ma twice to obtain x(t).
Let’s do this in a very systematic way, to get used to the general procedure.
First, write F = ma as

m
dv

dt
= F (t). (2.16)

Then separate variables and integrate both sides to obtain10

m

∫ v(t)

v0

dv′ =
∫ t

t0
F (t′) dt′. (2.17)

We have put primes on the integration variables so that we don’t confuse them
with the limits of integration. Eq. (2.17) yields v as a function of t, v(t). We
then separate variables in dx/dt = v(t) and integrate to obtain

∫ x(t)

x0

dx′ =
∫ t

t0
v(t′) dt′. (2.18)

This yields x as a function of t, x(t). This procedure might seem like a
cumbersome way to simply integrate something twice. That’s because it is.
But the technique proves more useful in the following case.

• F is a function of x only: F = F (x).

We will use
a =

dv

dt
=

dx

dt

dv

dx
= v

dv

dx
(2.19)

to write F = ma as
mv

dv

dx
= F (x). (2.20)

Now separate variables and integrate both sides to obtain

m

∫ v(x)

v0

v′ dv′ =
∫ x

x0

F (x′) dx′. (2.21)

The left side will contain the square of v(x). Taking a square root, this gives
v as a function of x, v(x). Separate variables in dx/dt = v(x) to obtain

∫ x(t)

x0

dx′

v(x′)
=

∫ t

t0
dt′. (2.22)

This gives t as a function of x, and hence (in principle) x as a function of t,
x(t). The unfortunate thing about this case is that the integral in eq. (2.22)
might not be doable. And even if it is, it might not be possible to invert t(x)
to produce x(t).

10If you haven’t seen such a thing before, the act of multiplying both sides by the infinitesimal
quantity dt′ might make you feel a bit uneasy. But it is in fact quite legal. If you wish, you
can imagine working with the small (but not infinitesimal) quantities ∆v and ∆t, for which it is
certainly legal to multiply both sides by ∆t. Then you can take a discrete sum over many ∆t
intervals, and then finally take the limit ∆t → 0, which results in eq. (2.17)
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• F is a function of v only: F = F (v).

Write F = ma as
m

dv

dt
= F (v). (2.23)

Separate variables and integrate both sides to obtain

m

∫ v(t)

v0

dv′

F (v′)
=

∫ t

t0
dt′. (2.24)

This yields t as a function of v, and hence (in principle) v as a function of t,
v(t). Integrate dx/dt = v(t) to obtain x(t) from

∫ x(t)

x0

dx′ =
∫ t

t0
v(t′) dt′. (2.25)

Note: In this F = F (v) case, if you want to find v as a function of x, v(x),
then you should write a as v(dv/dx) and integrate

m

∫ v(x)

v0

v′ dv′

F (v′)
=

∫ x

x0

dx′. (2.26)

You can then obtain x(t) from eq. (2.22), if desired.

When dealing with the initial conditions, we have chosen to put them in the
limits of integration above. If you wish, you can perform the integrals without any
limits, and just tack on a constant of integration to your result. The constant is
then determined from the initial conditions.

Again, as mentioned above, you do not have to memorize the above three proce-
dures, because there are variations, depending on what you’re given and what you
want to solve for. All you have to remember is that ẍ can be written as either dv/dt
or v dv/dx. One of these will get the job done (namely, the one that makes only two
out of the three variables, t, x, and v, appear in your differential equation). And
then be prepared to separate variables and integrate as many times as needed.

a is dv by dt.
Is this useful? There’s no guarantee.
If it leads to “Oh, heck!”’s,
Take dv by dx,
And then write down its product with v.

Example 1 (Gravitational force): A particle of mass m is subject to a constant
force F = −mg. The particle starts at rest at height h. Because this constant force
falls into all of the above three categories, we should be able to solve for y(t) in two
ways:

(a) Find y(t) by writing a as dv/dt.
(b) Find y(t) by writing a as v dv/dy.
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Solution:

(a) F = ma gives dv/dt = −g. Integrating this yields v = −gt + C, where C is a
constant of integration.11 The initial condition v(0) = 0 gives C = 0. Therefore,
dy/dt = −gt. Integrating this and using y(0) = h gives

y = h− 1
2
gt2. (2.27)

(b) F = ma gives v dv/dy = −g. Separating variables and integrating yields v2/2 =
−gy + C. The initial condition v(0) = 0 gives v2/2 = −gy + gh. Therefore,
v ≡ dy/dt = −

√
2g(h− y). We have chosen the negative square root, because

the particle is falling. Separating variables gives
∫

dy√
h− y

= −
√

2g

∫
dt. (2.28)

This yields 2
√

h− y =
√

2g t, where we have used the initial condition y(0) = h.
Hence, y = h− gt2/2, in agreement with part (a). The solution in part (a) was
clearly the simpler one.

Example 2 (Dropped ball): A beach-ball is dropped from rest at height h.
Assume12 that the drag force from the air takes the form, Fd = −βv. Find the
velocity and height as a function of time.

Solution: For simplicity in future formulas, let’s write the drag force as Fd = −βv ≡
−mαv (so we won’t have a bunch of 1/m’s floating around). Taking upward to be
the positive y direction, the force on the ball is

F = −mg −mαv. (2.29)

Note that v is negative here, because the ball is falling, so the drag force points
upward, as it should. Writing F = mdv/dt, and separating variables, gives

∫ v(t)

0

dv′

g + αv′
= −

∫ t

0

dt′. (2.30)

Integration yields ln(1 + αv/g) = −αt. Exponentiation then gives

v(t) = − g

α

(
1− e−αt

)
. (2.31)

Writing dy/dt ≡ v(t), and then separating variables and integrating to obtain y(t),
yields ∫ y(t)

h

dy′ = − g

α

∫ t

0

(
1− e−αt′

)
dt′. (2.32)

11We’ll do this example by adding on constants of integration which are then determined from
the initial conditions. We’ll do the following example by putting the initial conditions in the limits
of integration.

12The drag force is roughly proportional to v as long as the speed is fairly slow. For large speeds,
the drag force is roughly proportional to v2.
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Therefore,

y(t) = h− g

α

(
t− 1

α

(
1− e−αt

))
. (2.33)

Remarks:

(a) Let’s look at some limiting cases. If t is very small (more precisely, if αt ¿ 1), then
we can use e−x ≈ 1 − x + x2/2 to make approximations to leading order in t. You
can show that eq. (2.31) gives v(t) ≈ −gt. This makes sense, because the drag force
is negligible at the start, so the ball is essentially in free fall. And eq. (2.33) gives
y(t) ≈ h− gt2/2, as expected.

We can also look at large t. In this case, e−αt is essentially equal to zero, so eq. (2.31)
gives v(t) ≈ −g/α. (This is the “terminal velocity.” Its value makes sense, because it
is the velocity for which the total force, −mg −mαv, vanishes.) And eq. (2.33) gives
y(t) ≈ h − (g/α)t + g/α2. Interestingly, we see that for large t, g/α2 is the distance
our ball lags behind another ball which started out already at the terminal velocity,
g/α.

(b) The velocity of the ball obtained in eq. (2.31) depends on α, which was defined via
Fd = −mαv. We explicitly wrote the m here just to make all of our formulas look a
little nicer, but it should not be inferred that the velocity of the ball is independent of
m. The coefficient β ≡ mα depends (in some complicated way) on the cross-sectional
area, A, of the ball. Therefore, α ∝ A/m. Two balls of the same size, one made of
lead and one made of styrofoam, will have the same A but different m’s. Hence, their
α’s will be different, and they will fall at different rates.

For heavy objects in a thin medium such as air, α is small, so the drag effects are not
very noticeable over short distances. Heavy objects fall at roughly the same rate. If
the air were a bit thicker, different objects would fall at noticeably different rates, and
maybe it would have taken Galileo a bit longer to come to his conclusions.

What would you have thought, Galileo,
If instead you dropped cows and did say, “Oh!
To lessen the sound
Of the moos from the ground,
They should fall not through air, but through mayo!” ♣

2.4 Projectile motion

Consider a ball thrown through the air, not necessarily vertically. We will neglect
air resistance in the following discussion.

Let x and y be the horizontal and vertical positions, respectively. The force in
the x-direction is Fx = 0, and the force in the y-direction is Fy = −mg. So F = ma
gives

ẍ = 0, and ÿ = −g. (2.34)

Note that these two equations are “decoupled.” That is, there is no mention of y
in the equation for ẍ, and vice-versa. The motions in the x- and y-directions are
therefore completely independent.

Remark: The classic demonstration of the independence of the x- and y-motions is the
following. Fire a bullet horizontally (or, preferably, just imagine firing a bullet horizontally),
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and at the same time drop a bullet from the height of the gun. Which bullet will hit the
ground first? (Neglect air resistance, the curvature of the earth, etc.) The answer is that
they will hit the ground at the same time, because the effect of gravity on the two y-motions
is exactly the same, independent of what is going on in the x-direction. ♣

If the initial position and velocity are (X, Y ) and (Vx, Vy), then we can easily
integrate eqs. (2.34) to obtain

ẋ(t) = Vx,

ẏ(t) = Vy − gt. (2.35)

Integrating again gives

x(t) = X + Vxt,

y(t) = Y + Vyt− 1
2
gt2. (2.36)

These equations for the speeds and positions are all you need to solve a projectile
problem.

Example (Throwing a ball):

(a) For a given initial speed, at what inclination angle should a ball be thrown so
that it travels the maximum horizontal distance by the time it returns to the
ground? Assume that the ground is horizontal, and that the ball is released
from ground level.

(b) What is the optimal angle if the ground is sloped upward at an angle β (or
downward, if β is negative)?

Solution:

(a) Let the inclination angle be θ, and let the initial speed be V . Then the horizontal
speed is always Vx = V cos θ, and the initial vertical speed is Vy = V sin θ.
The first thing we need to do is find the time t in the air. We know that the
vertical speed is zero at time t/2, because the ball is moving horizontally at
its highest point. So the second of eqs. (2.35) gives Vy = g(t/2). Therefore,
t = 2Vy/g. 13

The first of eqs. (2.36) tells us that the horizontal distance traveled is d = Vxt.
Using t = 2Vy/g in this gives

d =
2VxVy

g
=

V 2(2 sin θ cos θ)
g

=
V 2 sin 2θ

g
. (2.37)

The sin 2θ factor has a maximum at

θ =
π

4
. (2.38)

13Alternatively, the time of flight can be found from the second of eqs. (2.36), which says that
the ball returns to the ground when Vyt = gt2/2. We will have to use this type of strategy in part
(b), where the trajectory is not symmetric around the maximum.
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The maximum horizontal distance traveled is then dmax = V 2/g.

Remarks: For θ = π/4, you can show that the maximum height achieved is V 2/4g.

This may be compared to the maximum height of V 2/2g (as you can show) if the ball

is thrown straight up. Note that any possible distance you might want to find in this

problem must be proportional to V 2/g, by dimensional analysis. The only question is

what the numerical factor is. ♣

(b) As in part (a), the first thing we need to do is find the time t in the air. If the
ground is sloped at an angle β, then the equation for the line of the ground is

y = (tan β)x. (2.39)

The path of the ball is given in terms of t by

x = (V cos θ)t, and y = (V sin θ)t− 1
2
gt2. (2.40)

We must solve for the t that makes y = (tan β)x, because this gives the place
where the path of the ball intersects the line of the ground. Using eqs. (2.40),
we find that y = (tan β)x when

t =
2V

g
(sin θ − tan β cos θ). (2.41)

(There is, of course, also the solution t = 0.) Plugging this into the expression
for x in eq. (2.40) gives

x =
2V 2

g
(sin θ cos θ − tanβ cos2 θ). (2.42)

We must now maximize this value for x, which is equivalent to maximizing
the distance along the slope. Setting the derivative with respect to θ equal to
zero, and using the double-angle formulas, sin 2θ = 2 sin θ cos θ and cos 2θ =
cos2 θ − sin2 θ, we find tan β = − cot 2θ. This can be rewritten as tan β =
− tan(π/2− 2θ). Therefore, β = −(π/2− 2θ), so we have

θ =
1
2

(
β +

π

2

)
. (2.43)

In other words, the throwing angle should bisect the angle between the ground
and the vertical.

Remarks: For β ≈ π/2, we have θ ≈ π/2, as should be the case. For β = 0, we have
θ = π/4, as we found in part (a). And for β ≈ −π/2, we have θ ≈ 0, which makes
sense.

Substituting the value of θ from eq. (2.43) into eq. (2.42), you can show (after a bit
of algebra) that the maximum distance traveled along the tilted ground is

d =
x

cos β
=

V 2/g

1 + sin β
. (2.44)

This checks in the various limits for β. ♣
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Along with the bullet example mentioned above, another classic example of the
independence of the x- and y-motions is the “hunter and monkey” problem. In it,
a hunter aims an arrow (made of styrofoam, of course) at a monkey hanging from
a branch in a tree. The monkey, thinking he’s being clever, tries to avoid the arrow
by letting go of the branch right when he sees the arrow released. The unfortunate
consequence of this action is that he will get hit, because gravity acts on both him
and the arrow in the same way; they both fall the same distance relative to where
they would have been if there were no gravity. And the monkey would get hit in
such a case, because the arrow is initially aimed at him. You can work this out in
Exercise 16, in a more peaceful setting involving fruit.

If a monkey lets go of a tree,
The arrow will hit him, you see,
Because both heights are pared
By a half gt2

From what they would be with no g.

2.5 Motion in a plane, polar coordinates

When dealing with problems where the motion lies in a plane, it is often conve-
nient to work with polar coordinates, r and θ. These are related to the Cartesian
coordinates by (see Fig. 2.6)

r
y

x

θ

Figure 2.6

x = r cos θ, and y = r sin θ. (2.45)

Depending on the problem, either Cartesian or polar coordinates will be easier to
use. It is usually clear from the setup which is better. For example, if the problem
involves circular motion, then polar coordinates are a good bet. But to use polar
coordinates, we need to know what form Newton’s second law takes in terms of
them. Therefore, the goal of the present section is to determine what F = ma ≡ mr̈
looks like when written in terms of polar coordinates.

At a given position r in the plane, the basis vectors in polar coordinates are r̂,
which is a unit vector pointing in the radial direction; and θ̂, which is a unit vector
pointing in the counterclockwise tangential direction. In polar coords, a general
vector may therefore be written as

r = rr̂. (2.46)

Note that the directions of the r̂ and θ̂ basis vectors depend, of course, on r.
Since the goal of this section is to find r̈, we must, in view of eq. (2.46), get a

handle on the time derivative of r̂. And we’ll eventually need the derivative of θ̂,
too. In contrast with the fixed Cartesian basis vectors (x̂ and ŷ), the polar basis
vectors (r̂ and θ̂) change as a point moves around in the plane.

We can find ˙̂r and ˙̂
θ in the following way. In terms of the Cartesian basis,

Fig. 2.7 shows that

y

x

cos

sin

θ

θ

θ

θ

r

θ

Figure 2.7
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r̂ = cos θ x̂ + sin θ ŷ,

θ̂ = − sin θ x̂ + cos θ ŷ. (2.47)

Taking the time derivative of these equations gives

˙̂r = − sin θ θ̇x̂ + cos θ θ̇ŷ,
˙̂
θ = − cos θ θ̇x̂− sin θ θ̇ŷ. (2.48)

Using eqs. (2.47), we arrive at the nice clean expressions,

˙̂r = θ̇θ̂, and ˙̂
θ = −θ̇r̂. (2.49)

These relations are fairly evident if we look at what happens to the basis vectors as
r moves a tiny distance in the tangential direction. Note that the basis vectors do
not change as r moves in the radial direction.

We can now start differentiating eq. (2.46). One derivative gives (yes, the
product rule works fine here)

ṙ = ṙr̂ + r ˙̂r
= ṙr̂ + rθ̇θ̂. (2.50)

This makes sense, because ṙ is the speed in the radial direction, and rθ̇ is the speed
in the tangential direction, which is often written as ωr (where ω ≡ θ̇ is the angular
speed, or “angular frequency”).14

Differentiating eq. (2.50) then gives

r̈ = r̈r̂ + ṙ ˙̂r + ṙθ̇θ̂ + rθ̈θ̂ + rθ̇
˙̂
θ

= r̈r̂ + ṙ(θ̇θ̂) + ṙθ̇θ̂ + rθ̈θ̂ + rθ̇(−θ̇r̂)
= (r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂. (2.51)

Finally, equating mr̈ with F ≡ Frr̂ + Fθθ̂ gives the radial and tangential forces as

Fr = m(r̈ − rθ̇2),
Fθ = m(rθ̈ + 2ṙθ̇). (2.52)

(See Exercise 32 for a slightly different derivation of these equations.) Let’s look at
each of the four terms on the right-hand sides of eqs. (2.52).

• The mr̈ term is quite intuitive. For radial motion, it simply states that F = ma
along the radial direction.

• The mrθ̈ term is also quite intuitive. For circular motion, it states that F =
ma along the tangential direction, because rθ̈ is the second derivative of the
distance rθ along the circumference.

14For rθ̇ to be the tangential speed, we must measure θ in radians and not degrees. Then rθ is
by definition the distance along the circumference, so rθ̇ is the speed along the circumference.
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• The −mrθ̇2 term is also fairly clear. For circular motion, it says that the radial
force is −m(rθ̇)2/r = −mv2/r, which is the familiar force that causes the
centripetal acceleration, v2/r. See Problem 19 for an alternate (and quicker)
derivation of this v2/r result.

• The 2mṙθ̇ term isn’t so obvious. It is called the Coriolis force. There are
various ways to look at this term. One is that it exists in order to keep angular
momentum conserved. We’ll have a great deal to say about the Coriolis force
in Chapter 9.

Example (Circular pendulum): A mass hangs from a massless string of length
`. Conditions have been set up so that the mass swings around in a horizontal circle,
with the string making an angle β with the vertical (see Fig. 2.8). What is the

β

l

m

Figure 2.8

angular frequency, ω, of this motion?

Solution: The mass travels in a circle, so the horizontal radial force must be
Fr = mrθ̇2 ≡ mrω2 (with r = ` sin β), directed radially inward. The forces on
the mass are the tension in the string, T , and gravity, mg (see Fig. 2.9). There is no

T

mg

β

Figure 2.9

acceleration in the vertical direction, so F = ma in the vertical and radial directions
gives, respectively,

T cos β = mg,

T sin β = m(` sin β)ω2. (2.53)

Solving for ω gives

ω =
√

g

` cos β
. (2.54)

Note that if β ≈ 0, then ω ≈
√

g/`, which equals the frequency of a plane pendulum
of length `. And if β ≈ 90◦, then ω →∞, which makes sense.
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2.6 Exercises

Section 2.2: Free-body diagrams

1. A peculiar Atwood’s machine

The Atwood’s machine in Fig. 2.10 consists of N masses, m, m/2, m/4, . . .,

...

?m/2

m

m/4

m/2

N-1

Figure 2.10

m/2N−1. All the pulleys and strings are massless, as usual.

(a) Put a mass m/2N−1 at the free end of the bottom string. What are the
accelerations of all the masses?

(b) Remove the mass m/2N−1 (which was arbitrarily small, for very large
N) that was attached in part (a). What are the accelerations of all the
masses, now that you’ve removed this infinitesimal piece?

2. Double-loop Atwood’s *
Consider the Atwood’s machine shown in Fig. 2.11 . It consists of three

m

2m

Figure 2.11

pulleys, a short piece of string connecting one mass to the bottom pulley, and
a continuous long piece of string that wraps twice around the bottom side of
the bottom pulley, and once around the top side of the top two pulleys. The
two masses are m and 2m. Assume that the parts of the string connecting the
pulleys are essentially vertical. Find the accelerations of the masses.

3. Atwood’s and a plane *
Consider the Atwoods machine shown in Fig. 2.12, with two masses m. The

m

m30

Figure 2.12

plane is frictionless, and it is inclined at a 30◦ angle. Find the accelerations
of the masses.

4. Atwood’s on a table *
Consider the Atwood’s machine shown in Fig. 2.13, Masses of 1 kg and 2 kg lie

top view

side view

2 kg 

1 kg

2 kg 

Figure 2.13

on a frictionless table, connected by a string which passes around a pulley. The
pulley is connected to another mass of 2 kg, which hangs down over another
pulley, as shown. Find the accelerations of all three masses.

5. Keeping the mass still *
In the Atwood’s machine in Fig. 2.14, what should M be (in terms of m1 and

m1

M

m2

Figure 2.14

m2) so that it doesn’t move?
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6. Three-mass Atwood’s **
Consider the Atwood’s machine in Fig. 2.15, with masses m, 2m, and 3m.

m

2m

3m

Figure 2.15

Find the accelerations of all three masses.

7. Accelerating plane **
A block of mass m rests on a plane inclined at angle θ. The coefficient of static
friction between the block and the plane is µ. The plane is accelerated to the
right with acceleration a (which may be negative); see Fig. 2.16. For what

θ

m

a
µ

Figure 2.16

range of a does the block remain at rest with respect to the plane?

8. Accelerating cylinders **
Three identical cylinders are arranged in a triangle as shown in Fig. 2.17,

F

Figure 2.17

with the bottom two lying on the ground. The ground and the cylinders are
frictionless. You apply a constant horizontal force (directed to the right) on
the left cylinder. Let a be the acceleration you give to the system. For what
range of a will all three cylinders remain in contact with each other?

Section 2.3: Solving differential equations

9. −bv2 force *
A particle of mass m is subject to a force F (v) = −bv2. The initial position
is zero, and the initial speed is v0. Find x(t).

10. −kx force **
A particle of mass m is subject to a force F (x) = −kx. The initial position is
zero, and the initial speed is v0. Find x(t).

11. kx force **
A particle of mass m is subject to a force F (x) = kx. The initial position is
zero, and the initial speed is v0. Find x(t).

12. Motorcycle circle ***
A motorcyclist wishes to travel in a circle of radius R on level ground. The
coefficient of friction between the tires and the ground is µ. The motorcycle
starts at rest. What is the minimum distance the motorcycle must travel in
order to achieve its maximum allowable speed (that is, the speed above which
it will skid out of the circular path)?

Section 2.4: Projectile motion

13. Dropped balls

A ball is dropped from height 4h. After it has fallen a distance d, a second
ball is dropped from height h. What should d be (in terms of h) so that the
balls hit the ground at the same time?
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14. Equal distances

At what angle should a ball be thrown so that its maximum height equals the
horizontal distance traveled?

15. Redirected horizontal motion *
A ball is dropped from rest at height h, and it bounces off a surface at height y,
with no loss in speed. The surface is inclined at 45◦, so that the ball bounces
off horizontally. What should y be so that the ball travels the maximum
horizontal distance?

16. Newton’s apple *
Newton is tired of apples falling on his head, so he decides to throw a rock
at one of the larger and more formidable looking apples positioned directly
above his favorite sitting spot. Forgetting all about his work on gravitation,
he aims the rock directly at the apple (see Fig. 2.18). To his surprise, the

Figure 2.18

apple falls from the tree just as he releases the rock. Show, by calculating
the rock’s height when it reaches the horizontal position of the apple, that the
rock will hit the apple.15

17. Throwing at a wall *
You throw a ball with speed V0 at a vertical wall, a distance ` away. At what
angle should you throw the ball, so that it hits the wall at a maximum height?
Assume ` < V 2

0 /g (why?).

18. Firing a cannon **
A cannon, when aimed vertically, is observed to fire a ball to a maximum
height of L. Another ball is then fired with this same speed, but with the
cannon now aimed up along a plane of length L, inclined at an angle θ, as
shown in Fig. 2.19. What should θ be, so that the ball travels the largest

L

d
θ

Figure 2.19
horizontal distance, d, by the time it returns to the height of the top of the
plane?

19. Colliding projectiles *
Two balls are fired from ground level, a distance d apart. The right one is
fired vertically with speed V ; see Fig. 2.20. You wish to simultaneously fire

d

u V

Figure 2.20
the left one at the appropriate velocity ~u so that it collides with the right ball
when they reach their highest point. What should ~u be (give the horizontal
and vertical components)? Given d, what should V be so that the speed u is
minimum?

15This problem suggests a way in which William Tell and his son might survive their ordeal if
they were plopped down on a planet with an unknown gravitational constant (provided that the
son weren’t too short or g weren’t too big).
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20. Throwing in the wind *
A ball is thrown horizontally to the right, from the top of a vertical cliff of
height h. A wind blows horizontally to the left, and assume (simplistically)
that the effect of the wind is to provide a constant force to the left, equal in
magnitude to the weight of the ball. How fast should the ball be thrown, so
that it lands at the foot of the cliff?

21. Throwing in the wind again *
A ball is thrown eastward across level ground. A wind blows horizontally to
the east, and assume (simplistically) that the effect of the wind is to provide
a constant force to the east, equal in magnitude to the weight of the ball.
At what angle θ should the ball be thrown, so that it travels the maximum
horizontal distance?

22. Increasing gravity *
At t = 0 on the planet Gravitus Increasicus, a projectile is fired with speed V0

at an angle θ above the horizontal. This planet is a strange one, in that the
acceleration due to gravity increases linearly with time, starting with a value
of zero when the projectile is fired. In other words, g(t) = βt, where β is a
given constant. What horizontal distance does the projectile travel? What
should θ be so that this horizonal distance is maximum?

23. Cart, ball, and plane **
A cart rolls down an inclined plane. A ball is fired from the cart, perpendic-
ularly to the plane. Will the ball eventually land in the cart? Hint: Choose
your coordinate system wisely.

Section 2.5: Motion in a plane, polar coordinates

24. Low-orbit satellite

What is the speed of a satellite whose orbit is just above the earth’s surface?
Give the numerical value.

25. Weight at the equator *
A person stands on a scale at the equator. If the earth somehow stopped
spinning but kept its same shape, would the reading on the scale increase or
decrease? By what fraction?

26. Banking an airplane *
An airplane flies at speed v in a horizontal circle of radius R. At what angle
should the plane be banked so that you don’t feel like you are getting flung to
the side in your seat?

27. Car on a banked track **
A car travels around a circular banked track with radius R. The coefficient of
friction between the tires and the track is µ. What is the maximum allowable
speed, above which the car slips?
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28. Driving on tilted ground **
A driver encounters a large tilted parking lot, where the angle of the ground
with respect to the horizontal is θ. The driver wishes to drive in a circle of
radius R, at constant speed. The coefficient of friction between the tires and
the ground is µ.

(a) What is the largest speed the driver can have if he wants to avoid slipping?

(b) What is the largest speed the driver can have, assuming he is concerned
only with whether or not he slips at one of the “side” points on the circle
(that is, halfway between the top and bottom points; see Fig. 2.21)?

θ

side point

Figure 2.21
29. Rolling wheel *

If you paint a dot on the rim of a rolling wheel, the coordinates of the dot may
be written as16

(x, y) = (Rθ + R sin θ, R + R cos θ). (2.55)

The path of the dot is called a cycloid. Assume that the wheel is rolling at
constant speed, which implies θ = ωt.

(a) Find ~v(t) and ~a(t) of the dot.

(b) At the instant the dot is at the top of the wheel, it may be considered to
be moving along the arc of a circle. What is the radius of this circle in
terms of R? Hint: You know v and a.

30. Bead on a hoop **
A bead rests on top of a frictionless hoop of radius R which lies in a vertical
plane. The bead is given a tiny push so that it slides down and around the
hoop. At what points on the hoop (specify them by giving the angular position
relative to the top) is the bead’s acceleration vertical?17 What is this vertical
acceleration? Note: We haven’t studied conservation of energy yet, but use the
fact that the bead’s speed after it has fallen a height h is given by v =

√
2gh.

31. Another bead on a hoop **
A bead rests on top of a frictionless hoop of radius R which lies in a vertical
plane. The bead is given a tiny push so that it slides down and around
the hoop. At what points on the hoop (specify them by giving the angular
position relative to the horizontal) is the bead’s acceleration horizontal? As
in the previous exercise, use v =

√
2gh.

16This can be shown by writing (x, y) as (Rθ, R) + (R sin θ, R cos θ). The first term here is the
position of the center of the wheel, and the second term is the position of the dot relative to the
center, where θ is measured clockwise from the top.

17One such point is the bottom of the hoop. Another point is technically the top, where a = 0.
Find the other two more interesting points (one on each side).
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32. Derivation of Fr and Fθ **
In Cartesian coordinates, a general vector takes the form,

r = xx̂ + yŷ

= r cos θ x̂ + r sin θ ŷ. (2.56)

Derive eqs. (2.52) by taking two derivatives of this expression for r, and then
using eqs. (2.47) to show that the result can be written in the form of eq.
(2.51). Note that unlike r̂ and θ̂, the vectors x̂ and ŷ do not change with
time.

33. A force Fθ = 2ṙθ̇ **
Consider a particle that feels an angular force only, of the form Fθ = 2mṙθ̇.
(As in Problem 21, there’s nothing all that physical about this force; it simply
makes the F = ma equations solvable.) Show that the trajectory takes the
form of an exponential spiral, that is, r = Aeθ.

34. A force Fθ = 3ṙθ̇ **
Consider a particle that feels an angular force only, of the form Fθ = 3mṙθ̇.
(As in the previous exercise, we’re solving this problem simply because we
can.) Show that ṙ =

√
Ar4 + B. Also, show that the particle reaches r = ∞

in a finite time.
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2.7 Problems

Section 2.2: Free-body diagrams

1. Sliding down a plane **

(a) A block starts at rest and slides down a frictionless plane inclined at angle
θ. What should θ be so that the block travels a given horizontal distance
in the minimum amount of time?

(b) Same question, but now let there be a coefficient of kinetic friction, µ,
between the block and the plane.

2. Moving plane ***
A block of mass m is held motionless on a frictionless plane of mass M and
angle of inclination θ (see Fig. 2.22). The plane rests on a frictionless hori-

θ

m

M

Figure 2.22 zontal surface. The block is released. What is the horizontal acceleration of
the plane?

3. Sliding sideways on plane ***
A block is placed on a plane inclined at angle θ. The coefficient of friction
between the block and the plane is µ = tan θ. The block is given a kick so
that it initially moves with speed V horizontally along the plane (that is, in
the direction perpendicular to the direction pointing straight down the plane).
What is the speed of the block after a very long time?

4. Atwood’s machine

A massless pulley hangs from a fixed support. A massless string connecting
two masses, m1 and m2, hangs over the pulley (see Fig. 2.23). Find the

m1 m2

Figure 2.23
acceleration of the masses and the tension in the string.

5. Double Atwood’s machine **
A double Atwood’s machine is shown in Fig. 2.24, with masses m1, m2, and

m1

m2 m3

Figure 2.24

m3. What are the accelerations of the masses?

6. Infinite Atwood’s machine ***
Consider the infinite Atwood’s machine shown in Fig. 2.25. A string passes

m

m

m

...

Figure 2.25

over each pulley, with one end attached to a mass and the other end attached to
another pulley. All the masses are equal to m, and all the pulleys and strings
are massless. The masses are held fixed and then simultaneously released.
What is the acceleration of the top mass?18

18You may define this infinite system as follows. Consider it to be made of N pulleys, with a
non-zero mass replacing what would have been the (N +1)st pulley. Then take the limit as N →∞.
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7. Line of pulleys *
N + 2 equal masses hang from a system of pulleys, as shown in Fig. 2.26.

N=3

Figure 2.26

What are the accelerations of all the masses?

8. Ring of pulleys **
Consider the system of pulleys shown in Fig. 2.27. The string (which is a

....

...
.

....

....

mN m1 2m

Figure 2.27

loop with no ends) hangs over N fixed pulleys. N masses, m1, m2, . . ., mN ,
are attached to N pulleys that hang on the string. What are the accelerations
of all the masses?

Section 2.3: Solving differential equations

9. Exponential force

A particle of mass m is subject to a force F (t) = me−bt. The initial position
and speed are zero. Find x(t).

10. Falling chain **
A chain of length ` is held stretched out on a frictionless horizontal table, with
a length y0 hanging down through a hole in the table. The chain is released.
As a function of time, find the length that hangs down through the hole (don’t
bother with t after the chain loses contact with the table). Also, find the speed
of the chain right when it loses contact with the table.

11. Circling around a pole **
A mass, which is free to move on a horizontal frictionless plane, is attached to
one end of a massless string which wraps partially around a frictionless vertical
pole of radius r (see the top view in Fig. 2.28). You hold onto the other end

hand

r

R

Figure 2.28

of the string. At t = 0, the mass has speed v0 in the tangential direction along
the dotted circle of radius R shown.

Your task is to pull on the string so that the mass keeps moving along the
dotted circle. You are required to do this in such a way that the string remains
in contact with the pole at all times. (You will have to move your hand around
the pole, of course.) What is the the speed of the mass as a function of time?

12. Throwing a beach ball ***
A beach ball is thrown upward with initial speed v0. Assume that the drag
force from the air is F = −mαv. What is the speed of the ball, vf , when
it hits the ground? (An implicit equation is sufficient.) Does the ball spend
more time or less time in the air than it would if it were thrown in vacuum?

13. Balancing a pencil ***
Consider a pencil that stands upright on its tip and then falls over. Let’s
idealize the pencil as a mass m sitting at the end of a massless rod of length
`.19

19It actually involves only a trivial modification to do the problem correctly using the moment of
inertia and the torque. But the point-mass version will be quite sufficient for the present purposes.
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(a) Assume that the pencil makes an initial (small) angle θ0 with the vertical,
and that its initial angular speed is ω0. The angle will eventually become
large, but while it is small (so that sin θ ≈ θ), what is θ as a function of
time?

(b) You might think that it would be possible (theoretically, at least) to make
the pencil balance for an arbitrarily long time, by making the initial θ0

and ω0 sufficiently small.
However, it turns out that due to Heisenberg’s uncertainty principle
(which puts a constraint on how well we can know the position and mo-
mentum of a particle), it is impossible to balance the pencil for more than
a certain amount of time. The point is that you can’t be sure that the
pencil is initially both at the top and at rest. The goal of this problem
is to be quantitative about this. The time limit is sure to surprise you.
Without getting into quantum mechanics, let’s just say that the uncer-
tainty principle says (up to factors of order 1) that ∆x∆p ≥ h̄ (where
h̄ = 1.06 · 10−34 Js is Planck’s constant). The implications of this are
somewhat vague, but we’ll just take it to mean that the initial conditions
satisfy (`θ0)(m`ω0) ≥ h̄.
With this condition, find the maximum time it can take your solution
in part (a) to become of order 1. In other words, determine (roughly)
the maximum time the pencil can balance. Assume m = 0.01 kg, and
` = 0.1m.

Section 2.4: Projectile motion

14. Throwing a ball from a cliff **
A ball is thrown with speed v from the edge of a cliff of height h. At what
inclination angle should it be thrown so that it travels the maximum horizontal
distance? What is this maximum distance? Assume that the ground below
the cliff is horizontal.

15. Redirected motion **
A ball is dropped from rest at height h, and it bounces off a surface at height
y (with no loss in speed). The surface is inclined so that the ball bounces off
at an angle of θ with respect to the horizontal. What should y and θ be so
that the ball travels the maximum horizontal distance?

16. Maximum trajectory length ***
A ball is thrown at speed v from zero height on level ground. Let θ0 be the
angle at which the ball should be thrown so that the distance traveled through
the air is maximum. Show that θ0 satisfies

sin θ0 ln
(

1 + sin θ0

cos θ0

)
= 1. (2.57)

You can show numerically that θ0 ≈ 56.5◦.
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17. Maximum trajectory area *
A ball is thrown at speed v from zero height on level ground. At what angle
should it be thrown so that the area under the trajectory is maximum?

18. Bouncing ball *
A ball is thrown straight upward so that it reaches a height h. It falls down
and bounces repeatedly. After each bounce, it returns to a certain fraction
f of its previous height. Find the total distance traveled, and also the total
time, before it comes to rest. What is its average speed?

Section 2.5: Motion in a plane, polar coordinates

19. Centripetal acceleration *
Show that the acceleration of a particle moving in a circle is v2/r. To do this,
draw the position and velocity vectors at two nearby times, and then make
use of some similar triangles.

20. Free particle **
Consider a free particle in a plane. Using Cartesian coordinates, it is trivial to
show that the particle moves in a straight line. The task of this problem is to
demonstrate this result in a much more cumbersome way, using eqs. (2.52).
More precisely, show that cos θ = r0/r for a free particle, where r0 is the radius
at closest approach to the origin, and θ is measured with respect to this radius.

21. A force Fθ = ṙθ̇ **
Consider a particle that feels an angular force only, of the form Fθ = mṙθ̇.
(There’s nothing all that physical about this force. It simply makes the F =
ma equations solvable.) Show that ṙ =

√
A ln r + B, where A and B are

constants of integration, determined by the initial conditions.
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2.8 Solutions

1. Sliding down a plane

(a) The component of gravity along the plane in g sin θ. The acceleration in the
horizontal direction is therefore ax = (g sin θ) cos θ. Our goal is to maximize ax.
By taking the derivative, or by noting that sin θ cos θ = (sin 2θ)/2, we obtain
θ = π/4.

(b) The normal force from the plane is mg cos θ, so the kinetic friction force is
µmg cos θ. The acceleration along the plane is therefore g(sin θ − µ cos θ), and
so the acceleration in the horizontal direction is ax = g(sin θ−µ cos θ) cos θ. We
want to maximize this. Setting the derivative equal to zero gives

(cos2 θ − sin2 θ) + 2µ sin θ cos θ = 0 =⇒ cos 2θ + µ sin 2θ = 0

=⇒ tan 2θ = − 1
µ

. (2.58)

For µ → 0, this gives the π/4 result from part (a). For µ → ∞, we obtain
θ ≈ π/2, which makes sense.

Remark: The time to travel a horizontal distance d is obtained from axt2/2 = d.

In part (a), this gives a minimum time of 2
√

d/g. In part (b), you can show that

the maximum ax is (g/2)(
√

1 + µ2 − µ), and that this leads to a minimum time of

2
√

d/g

√√
1 + µ2 + µ. This has the correct µ → 0 limit, and it behaves like 2

√
2µd/g

for µ →∞. ♣

2. Moving plane
Let N be the normal force between the block and the plane. Note that we cannot
assume that N = mg cos θ, because the plane recoils. We can see that N = mg cos θ
is in fact incorrect, because in the limiting case where M = 0, we have no normal
force at all.
The various F = ma equations (vertical and horizontal for the block, and horizontal
for the plane) are

mg −N cos θ = may,

N sin θ = max,

N sin θ = MAx, (2.59)

where we have chosen the positive directions for ay, ax, and Ax to be downward,
rightward, and leftward, respectively. There are four unknowns here: ax, ay, Ax, and
N . So we need one more equation. This fourth equation is the constraint that the
block remains in contact with the plane. The horizontal distance between the block
and its starting point on the plane is (ax+Ax)t2/2, and the vertical distance is ayt2/2.
The ratio of these distances must equal tan θ if the block is to remain on the plane.
Therefore, we must have

ay

ax + Ax
= tan θ. (2.60)

Using eqs. (2.59), this becomes

g − N
m cos θ

N
m sin θ + N

M sin θ
= tan θ

=⇒ N = g

(
sin θ tan θ

(
1
m

+
1
M

)
+

cos θ

m

)−1

. (2.61)
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(In the limit M →∞, this reduces to N = mg cos θ, as it should.) Having found N ,
the third of eqs. (2.59) gives Ax, which may be written as

Ax =
N sin θ

M
=

mg sin θ cos θ

M + m sin2 θ
. (2.62)

Remarks: For given M and m, you can show that the angle θ0 that maximizes Ax is

tan θ0 =

√
M

M + m
. (2.63)

If M ¿ m, then θ0 ≈ 0. If M À m, then θ0 ≈ π/4.

In the limit M ¿ m, eq. (2.62) gives Ax ≈ g/ tan θ. This makes sense, because m falls
essentially straight down, and the plane gets squeezed out to the left.

In the limit M À m, we have Ax ≈ g(m/M) sin θ cos θ. This is more transparent if we instead

look at ax = (M/m)Ax ≈ g sin θ cos θ. Since the plane is essentially at rest in this limit, this

value of ax implies that the acceleration of m along the plane is equal to ax/ cos θ ≈ g sin θ,

as expected. ♣
3. Sliding sideways on plane

The normal force from the plane is N = mg cos θ. Therefore, the friction force on
the block is µN = (tan θ)N = mg sin θ. This force acts in the direction opposite to
the motion. The block also feels the gravitational force of mg sin θ pointing down the
plane.
Because the magnitudes of the friction force and the gravitational force along the
plane are equal, the acceleration along the direction of motion equals the negative
of the acceleration in the direction down the plane. Therefore, in a small increment
of time, the speed that the block loses along its direction of motion exactly equals
the speed that it gains in the direction down the plane. Letting v be the speed of
the block, and letting vy be the component of the velocity in the direction down the
plane, we therefore have

v + vy = C, (2.64)

where C is a constant. C is given by its initial value, which is V + 0 = V . The final
value of C is Vf + Vf = 2Vf (where Vf is the final speed of the block), because the
block is essentially moving straight down the plane after a very long time. Therefore,

2Vf = V =⇒ Vf =
V

2
. (2.65)

4. Atwood’s machine
Let T be the tension in the string, and let a be the acceleration of m1 (with upward
taken to be positive). Then −a is the acceleration of m2. So we have

T −m1g = m1a,

T −m2g = m2(−a). (2.66)

Solving these two equations for a and T gives

a =
(m2 −m1)g
m2 + m1

, and T =
2m1m2g

m2 + m1
. (2.67)

Remarks: As a double-check, a has the correct limits when m2 À m1, m1 À m2, and
m2 = m1 (namely a ≈ g, a ≈ −g, and a = 0, respectively).
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As far as T goes, if m1 = m2 ≡ m, then T = mg, as it should. And if m1 ¿ m2, then

T ≈ 2m1g. This is correct, because it makes the net upward force on m1 equal to m1g,

which means that its acceleration is g upward, which is consistent with the fact that m2 is

essentially in free fall. ♣
5. Double Atwood’s machine

Let the tension in the lower string be T . Then the tension in the upper string is 2T
(by balancing the forces on the bottom pulley). The three F = ma equations are
therefore (with all the a’s taken to be positive upward)

2T −m1g = m1a1,

T −m2g = m2a2,

T −m3g = m3a3. (2.68)

And conservation of string says that the acceleration of m1 is

a1 = −
(

a2 + a3

2

)
. (2.69)

This follows from the fact that the average position of m2 and m3 moves the same
distance as the bottom pulley, which in turn moves the same distance (but in the
opposite direction) as m1.

We now have four equations in the four unknowns, a1, a2, a3, and T . With a little
work, we can solve for the accelerations,

a1 = g
4m2m3 −m1(m2 + m3)
4m2m3 + m1(m2 + m3)

,

a2 = −g
4m2m3 + m1(m2 − 3m3)
4m2m3 + m1(m2 + m3)

,

a3 = −g
4m2m3 + m1(m3 − 3m2)
4m2m3 + m1(m2 + m3)

. (2.70)

Remarks: There are many limits we can check here. A couple are: (1) If m2 = m3 = m1/2,
then all the a’s are zero, which is correct. (2) If m3 is much less than both m1 and m2, then
a1 = −g, a2 = −g, and a3 = 3g. To understand this 3g, convince yourself that if m1 and
m2 go down by d, then m3 goes up by 3d.

Note that a1 can be written as

a1 = g

4m2m3
(m2+m3)

−m1

4m2m3
(m2+m3)

+ m1

. (2.71)

In view of the result of Problem 4 in eq. (2.67), we see that as far as m1 is concerned, the

m2, m3 pulley system acts just like a mass of 4m2m3/(m2 + m3). This has the expected

properties of equaling zero when either m2 or m3 is zero, and equaling 2m if m2 = m3 ≡ m.

♣
6. Infinite Atwood’s machine

First Solution: If the strength of gravity on the earth were multiplied by a factor
η, then the tension in all of the strings in the Atwood’s machine would likewise be
multiplied by η. This is true because the only way to produce a quantity with the
units of tension (that is, force) is to multiply a mass by g. Conversely, if we put
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the Atwood’s machine on another planet and discover that all of the tensions are
multiplied by η, then we know that the gravity there must be ηg.
Let the tension in the string above the first pulley be T . Then the tension in the string
above the second pulley is T/2 (because the pulley is massless). Let the downward
acceleration of the second pulley be a2. Then the second pulley effectively lives in a
world where gravity has strength g − a2.
Consider the subsystem of all the pulleys except the top one. This infinite subsystem is
identical to the original infinite system of all the pulleys. Therefore, by the arguments
in the first paragraph above, we must have

T

g
=

T/2
g − a2

, (2.72)

which gives a2 = g/2. But a2 is also the acceleration of the top mass, so our answer
is g/2.

Remarks: You can show that the relative acceleration of the second and third pulleys is
g/4, and that of the third and fourth is g/8, etc. The acceleration of a mass far down in the
system therefore equals g(1/2 + 1/4 + 1/8 + · · ·) = g, which makes intuitive sense.

Note that T = 0 also makes eq. (2.72) true. But this corresponds to putting a mass of zero

at the end of a finite pulley system (see the following solution). ♣

Second Solution: Consider the following auxiliary problem.

Problem: Two setups are shown below in Fig. 2.29. The first contains a hanging
1 2

m

m m

as as

Figure 2.29

mass m. The second contains a pulley, over which two masses, m1 and m2, hang. Let
both supports have acceleration as downward. What should m be, in terms of m1

and m2, so that the tension in the top string is the same in both cases?

Answer: In the first case, we have

mg − T = mas. (2.73)

In the second case, let a be the acceleration of m2 relative to the support (with
downward taken to be positive). Then we have

m1g − T

2
= m1(as − a),

m2g − T

2
= m2(as + a). (2.74)

Note that if we define g′ ≡ g − as, then we may write the above three equations as

mg′ = T,

m1g
′ =

T

2
−m1a,

m2g
′ =

T

2
+ m2a. (2.75)

Eliminating a from the last two of these equations gives T = 4m1m2g
′/(m1 + m2).

Using this value of T in the first equation then gives

m =
4m1m2

m1 + m2
. (2.76)
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Note that the value of as is irrelevant. We effectively have a fixed support in a world
where the acceleration due to gravity is g′ (see eqs. (2.75)), and the answer can’t
depend on g′, by dimensional analysis. This auxiliary problem shows that the two-
mass system in the second case may be equivalently treated as a mass m, given by
eq. (2.76), as far as the upper string is concerned.

Now let’s look at our infinite Atwood’s machine. Assume that the system has N
pulleys, where N → ∞. Let the bottom mass be x. Then the auxiliary problem
shows that the bottom two masses, m and x, may be treated as an effective mass
f(x), where

f(x) =
4mx

m + x

=
4x

1 + (x/m)
. (2.77)

We may then treat the combination of the mass f(x) and the next m as an effective
mass f(f(x)). These iterations may be repeated, until we finally have a mass m and
a mass f (N−1)(x) hanging over the top pulley. So we must determine the behavior of
fN (x), as N →∞. This behavior is clear if we look at the following plot of f(x).

m

m

2m 

3m

4m

2m 3m 4m 5m

x

y = f (x)

y = x

y

Note that x = 3m is a fixed point of f(x). That is, f(3m) = 3m. This plot shows
that no matter what x we start with, the iterations approach 3m (unless we start at
x = 0, in which case we remain there). These iterations are shown graphically by the
directed lines in the plot. After reaching the value f(x) on the curve, the line moves
horizontally to the x value of f(x), and then vertically to the value f(f(x)) on the
curve, and so on.
Therefore, since fN (x) → 3m as N →∞, our infinite Atwood’s machine is equivalent
to (as far as the top mass is concerned) just two masses, m and 3m. You can then
quickly show that that the acceleration of the top mass is g/2.
Note that as far as the support is concerned, the whole apparatus is equivalent to a
mass 3m. So 3mg is the upward force exerted by the support.
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7. Line of pulleys

Let m be the common mass, and let T be the tension in the string. Let a be the
acceleration of the end masses, and let a′ be the acceleration of the other N masses,
with upward taken to be positive. Note that these N accelerations are indeed all
equal, because the same net force acts on all of the internal N masses, namely 2T
upwards and mg downwards. The F = ma equations for the end and internal masses
are, respectively,

T −mg = ma,

2T −mg = ma′. (2.78)

But the string has fixed length. Therefore,

N(2a′) + a + a = 0. (2.79)

Eliminating T from eqs. (2.78) gives a′ = 2a + g. Combining this with eq. (2.79)
then gives

a = − Ng

2N + 1
, and a′ =

g

2N + 1
. (2.80)

Remarks: For N = 1, we have a = −g/3 and a′ = g/3. For larger N , a increases in
magnitude and approaches −g/2 for N →∞, and a′ decreases in magnitude and approaches
zero for N →∞.

The signs of a and a′ in eq. (2.80) may be surprising. You might think that if, say, N = 100,

then these 100 masses will “‘win” out over the two end masses, so that the N masses will

fall. But this is not correct, because there are many (2N , in fact) tensions acting up on the

N masses. They do not act like a mass Nm hanging below one pulley. In fact, two masses

of m/2 on the ends will balance any number N of masses in the interior (with the help of

the upward forces from the top row of pulleys). ♣
8. Ring of pulleys

Let T be the tension in the string. Then F = ma for mi gives

2T −mig = miai, (2.81)

with upward taken to be positive. The ai’s are related by the fact that the string
has fixed length, which implies that the sum of the displacements of all the masses is
zero. In other words,

a1 + a2 + · · ·+ aN = 0. (2.82)

If we divide eq. (2.81) by mi, and then add the N such equations together, we obtain,
using eq. (2.82),

2T

(
1

m1
+

1
m2

+ · · ·+ 1
mN

)
−Ng = 0. (2.83)

Substituting this value for T into (2.81) gives

ai = g


 N

mi

(
1

m1
+ 1

m2
+ · · ·+ 1

mN

) − 1


 . (2.84)

A few special cases are: If all the masses are equal, then all ai = 0. If mk = 0 (and all the

others are not zero), then ak = (N − 1)g, and all the other ai = −g.
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9. Exponential force
We are given ẍ = e−bt. Integrating this with respect to time gives v(t) = −e−bt/b+A.
Integrating again gives x(t) = e−bt/b2 +At+B. The initial condition, v(0) = 0, gives
−1/b + A = 0 =⇒ A = 1/b. And the initial condition, x(0) = 0, gives 1/b2 + B =
0 =⇒ B = −1/b2. Therefore,

x(t) =
e−bt

b2
+

t

b
− 1

b2
. (2.85)

Limits: For t →∞, v approaches 1/b, and x approaches t/b− 1/b2. We see that the particle

eventually lags a distance 1/b2 behind another particle that started at the same position but

with speed v = 1/b.

10. Falling chain
Let the density of the chain be ρ, and let y(t) be the length hanging down through
the hole at time t. Then the total mass is ρ`, and the mass hanging below the hole is
ρy. The net downward force on the chain is (ρy)g, so F = ma gives

ρgy = (ρ`)ÿ =⇒ ÿ =
g

`
y. (2.86)

At this point, there are two ways we can proceed:

First method: Since we have a function whose second derivative is proportional
to itself, a good bet for the solution is an exponential function. And indeed, a quick
check shows that the solution is

y(t) = Aeαt + Be−αt, where α ≡
√

g

`
. (2.87)

Taking the derivative of this to obtain ẏ(t), and using the given information that
ẏ(0) = 0, we find A = B. Using y(0) = y0, we then find A = B = y0/2. So the length
that hangs below the hole is

y(t) =
y0

2
(
eαt + e−αt

) ≡ y0 cosh(αt). (2.88)

And the speed is
ẏ(t) =

αy0

2
(
eαt − e−αt

) ≡ αy0 sinh(αt). (2.89)

The time T that satisfies y(T ) = ` is given by ` = y0 cosh(αT ). Using sinh x =√
cosh2 x− 1, we find that the speed of the chain right when it loses contact with the

table is
ẏ(T ) = αy0 sinh(αT ) = α

√
`2 − y2

0 ≡
√

g`
√

1− η2
0 , (2.90)

where η0 ≡ y0/` is the initial fraction hanging below the hole.
If η0 ≈ 0, then the speed at time T is

√
g` (this quickly follows from conservation of

energy, which is the subject of Chapter 4). Also, you can show that eq. (2.88) implies
that T goes to infinity logarithmically as η0 → 0.

Second method: Write ÿ as v dv/dy in eq. (2.86), and then separate variables and
integrate to obtain

∫ v

0

v dv = α2

∫ y

y0

y dy =⇒ v2 = α2(y2 − y2
0), (2.91)
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where α ≡
√

g/`. Now write v as dy/dt and separate variables again to obtain
∫ y

y0

dy√
y2 − y2

0

= α

∫ t

0

dt. (2.92)

The integral on the left-hand side is cosh−1(y/y0), so we arrive at

y(t) = y0 cosh(αt), (2.93)

in agreement with eq. (2.88). The solution proceeds as above. However, an easier
way to obtain the final speed with this method is to simply use the result for v in
eq. (2.91). This tells us that the speed of the chain when it leaves the table (that is,
when y = `) is v = α

√
`2 − y2

0 , in agreement with eq. (2.90).

11. Circling around a pole
Let F be the tension in the string. At the mass, the angle between the string and the
radius of the dotted circle is θ = sin−1(r/R). In terms of θ, the radial and tangential
F = ma equations are

F cos θ =
mv2

R
, and

F sin θ = mv̇. (2.94)

Dividing these two equations gives tan θ = (Rv̇)/v2. Separating variables and inte-
grating gives

∫ v

v0

dv

v2
=

tan θ

R

∫ t

0

dt

=⇒ 1
v0
− 1

v
=

(tan θ)t
R

=⇒ v(t) =
(

1
v0
− (tan θ)t

R

)−1

. (2.95)

Remark: Note that v becomes infinite when

t = T ≡ R

v0 tan θ
. (2.96)

In other words, you can keep the mass moving in the desired circle only up to time T . After

that, it is impossible. (Of course, it will become impossible, for all practical purposes, long

before v becomes infinite.) The total distance, d =
∫

v dt, is infinite, because this integral

diverges (barely, like a log) as t approaches T . ♣
12. Throwing a beach ball

On both the way up and the way down, the total force on the ball is

F = −mg −mαv. (2.97)

On the way up, v is positive, so the drag force points downward, as it should. And
on the way down, v is negative, so the drag force points upward.
Our strategy for finding vf will be to produce two different expressions for the maxi-
mum height, h, and then equate them. We’ll find these two expressions by considering
the upward and then the downward motion of the ball. In doing so, we will need to
write the acceleration of the ball as a = v dv/dy.
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For the upward motion, F = ma gives

−mg −mαv = mv
dv

dy

=⇒
∫ h

0

dy = −
∫ 0

v0

v dv

g + αv
. (2.98)

where we have taken advantage of the fact that we know that the speed of the ball
at the top is zero. Writing v/(g + αv) as [1 − g/(g + αv)]/α, we may evaluate the
integral to obtain

h =
v0

α
− g

α2
ln

(
1 +

αv0

g

)
. (2.99)

Now let us consider the downward motion. Let vf be the final speed, which is a positive
quantity. The final velocity is then the negative quantity, −vf . Using F = ma, we
similarly obtain ∫ 0

h

dy = −
∫ −vf

0

v dv

g + αv
. (2.100)

Performing the integration (or just replacing the v0 in eq. (2.99) with −vf ) gives

h = −vf

α
− g

α2
ln

(
1− αvf

g

)
. (2.101)

Equating the expressions for h in eqs. (2.99) and (2.101) gives an implicit equation
for vf in terms of v0,

v0 + vf =
g

α
ln

(
g + αv0

g − αvf

)
. (2.102)

Remarks: In the limit of small α (more precisely, in the limit αv0/g ¿ 1), we can use
ln(1+x) = x−x2/2+ · · · to obtain approximate values for h in eqs. (2.99) and (2.101). The
results are, as expected,

h ≈ v2
0

2g
, and h ≈ v2

f

2g
. (2.103)

We can also make approximations for large α (or large αv0/g). In this limit, the log term

in eq. (2.99) is negligible, so we obtain h ≈ v0/α. And eq. (2.101) gives vf ≈ g/α, because

the argument of the log must be very small in order to give a very large negative number,

which is needed to produce a positive h on the left-hand side. There is no way to relate vf

and h is this limit, because the ball quickly reaches the terminal velocity of −g/α (which is

the velocity that makes the net force equal to zero), independent of h. ♣

Let’s now find the times it takes for the ball to go up and to go down. We’ll present
two methods for doing this.

First method: Let T1 be the time for the upward path. If we write the acceleration
of the ball as a = dv/dt, then F = ma gives

−mg −mαv = m
dv

dt

=⇒
∫ T1

0

dt = −
∫ 0

v0

dv

g + αv
. (2.104)
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T1 =
1
α

ln
(

1 +
αv0

g

)
. (2.105)

In a similar manner, we find that the time T2 for the downward path is

T2 = − 1
α

ln
(

1− αvf

g

)
. (2.106)

Therefore,

T1 + T2 =
1
α

ln
(

g + αv0

g − αvf

)
. (2.107)

Using eq. (2.102), we have

T1 + T2 =
v0 + vf

g
. (2.108)

This is shorter than the time in vacuum (namely 2v0/g) because vf < v0.

Second method: The very simple form of eq. (2.108) suggests that there is a
cleaner way to calculate the total time of flight. And indeed, if we integrate mdv/dt =
−mg−mαv with respect to time on the way up, we obtain −v0 = −gT1−αh (because∫

v dt = h). Likewise, if we integrate mdv/dt = −mg − mαv with respect to time
on the way down, we obtain −vf = −gT2 + αh (because

∫
v dt = −h). Adding these

two results gives eq. (2.108). This procedure only works, of course, because the drag
force is proportional to v.

Remarks: The fact that the time here is shorter than the time in vacuum isn’t obvious.
On one hand, the ball doesn’t travel as high in air as it would in vacuum (so you might think
that T1 + T2 < 2v0/g). But on the other hand, the ball moves slower in air (so you might
think that T1 + T2 > 2v0/g). It isn’t obvious which effect wins, without doing a calculation.

For any α, you can use eq. (2.105) to show that T1 < v0/g. But T2 is harder to get a handle

on, because it is given in terms of vf . But in the limit of large α, the ball quickly reaches

terminal velocity, so we have T2 ≈ h/vf ≈ (v0/α)/(g/α) = v0/g. Interestingly, this is the

same as the downward (and upward) time for a ball thrown in vacuum. ♣
13. Balancing a pencil

(a) The component of gravity in the tangential direction is mg sin θ ≈ mgθ. There-
fore, the tangential F = ma equation is mgθ = m`θ̈, which may be written as
θ̈ = (g/`)θ. The general solution to this equation is20

θ(t) = Aet/τ + Be−t/τ , where τ ≡
√

`/g. (2.109)

The constants A and B are found from the initial conditions,

θ(0) = θ0 =⇒ A + B = θ0,

θ̇(0) = ω0 =⇒ (A−B)/τ = ω0. (2.110)

Solving for A and B, and then plugging them into eq. (2.109) gives

θ(t) =
1
2

(θ0 + ω0τ) et/τ +
1
2

(θ0 − ω0τ) e−t/τ . (2.111)

20If you want, you can derive this by separating variables and integrating. The solution is
essentially the same as in the second method presented in the solution to Problem 10.
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(b) The constants A and B will turn out to be small (they will each be of order√
h̄). Therefore, by the time the positive exponential has increased enough to

make θ of order 1, the negative exponential will have become negligible. We will
therefore ignore the latter term from here on. In other words,

θ(t) ≈ 1
2

(θ0 + ω0τ) et/τ . (2.112)

The goal is to keep θ small for as long as possible. Hence, we want to minimize
the coefficient of the exponential, subject to the uncertainty-principle constraint,
(`θ0)(m`ω0) ≥ h̄. This constraint gives ω0 ≥ h̄/(m`2θ0). Therefore,

θ(t) ≥ 1
2

(
θ0 +

h̄τ

m`2θ0

)
et/τ . (2.113)

Taking the derivative with respect to θ0 to minimize the coefficient, we find that
the minimum value occurs at

θ0 =

√
h̄τ

m`2
. (2.114)

Substituting this back into eq. (2.113) gives

θ(t) ≥
√

h̄τ

m`2
et/τ . (2.115)

Setting θ ≈ 1, and then solving for t gives (using τ ≡
√

`/g)

t ≤ 1
4

√
`

g
ln

(
m2`3g

h̄2

)
. (2.116)

With the given values, m = 0.01 kg and ` = 0.1m, along with g = 10 m/s2 and
h̄ = 1.06 · 10−34 Js, we obtain

t ≤ 1
4
(
0.1 s

)
ln(9 · 1061) ≈ 3.5 s. (2.117)

No matter how clever you are, and no matter how much money you spend on
the newest, cutting-edge pencil-balancing equipment, you can never get a pencil
to balance for more than about four seconds.

Remarks: This smallness of this answer is quite amazing. It is remarkable that a
quantum effect on a macroscopic object can produce an everyday value for a time scale.
Basically, the point here is that the fast exponential growth of θ (which gives rise to
the log in the final result for t) wins out over the smallness of h̄, and produces a result
for t of order 1. When push comes to shove, exponential effects always win.

The above value for t depends strongly on ` and g, through the
√

`/g term. But the
dependence on m, `, and g in the log term is very weak. If m were increased by a
factor of 1000, for example, the result for t would increase by only about 10%. Note
that this implies that any factors of order 1 that we neglected throughout this problem
are completely irrelevant. They will appear in the argument of the log term, and will
thus have negligible effect.

Note that dimensional analysis, which is generally a very powerful tool, won’t get you
too far in this problem. The quantity

√
`/g has dimensions of time, and the quantity



2.8. SOLUTIONS II-39

η ≡ m2`3g/h̄2 is dimensionless (it is the only such quantity), so the balancing time
must take the form,

t ≈
√

`

g
f(η), (2.118)

where f is some function. If the leading term in f were a power (even, for example, a

square root), then t would essentially be infinite (t ≈ 1030 s for the square root). But f

in fact turns out to be a log (which you can’t determine without solving the problem),

which completely cancels out the smallness of h̄, reducing an essentially infinite time

down to a few seconds. ♣

14. Throwing a ball from a cliff
Let the inclination angle be θ. Then the horizontal speed is vx = v cos θ, and the
initial vertical speed is vy = v sin θ. The time it takes for the ball to hit the ground
is given by h + (v sin θ)t− gt2/2 = 0. Therefore,

t =
v

g

(
sin θ +

√
sin2 θ + β

)
, where β ≡ 2gh

v2
. (2.119)

(The “−” solution for t from the quadratic formula corresponds to the ball being
thrown backwards down through the cliff.) The horizontal distance traveled is d =
(v cos θ)t, which gives

d =
v2

g
cos θ

(
sin θ +

√
sin2 θ + β

)
. (2.120)

We want to maximize this function of θ. Taking the derivative, multiplying through
by

√
sin2 θ + β, and setting the result equal to zero, gives

(cos2 θ − sin2 θ)
√

sin2 θ + β = sin θ
(
β − (cos2 θ − sin2 θ)

)
. (2.121)

Using cos2 θ = 1 − sin2 θ, and then squaring and simplifying this equation, gives an
optimal angle of

sin θmax =
1√

2 + β
≡ 1√

2 + 2gh/v2
. (2.122)

Plugging this into eq. (2.120), and simplifying, gives a maximum distance of

dmax =
v2

g

√
1 + β ≡ v2

g

√
1 +

2gh

v2
. (2.123)

Remarks: If h = 0, then we obtain θmax = π/4 and dmax = v2/g, in agreement with the
example in Section 2.4. If h →∞ or v → 0, then θ ≈ 0, which makes sense.

If we make use of conservation of energy (discussed in Chapter 4), it turns out that the final

speed of the ball when it hits the ground is vf =
√

v2 + 2gh. The maximum distance in eq.
(2.123) may therefore be written as (with vi ≡ v being the initial speed)

dmax =
vivf

g
. (2.124)

Note that this is symmetric in vi and vf , as it must be, because we could imagine the

trajectory running backwards. Also, it equals zero if vi is zero, as it should. We can also

write the angle θ in eq. (2.122) in terms of vf (instead of h). You can show that the result

is tan θ = vi/vf . You can further show that this implies that the initial and final velocities

are perpendicular to each other. The simplicity of all these results suggests that there is an

easier way to derive them, but I have no clue what it is. ♣



II-40 CHAPTER 2. USING F = MA

15. Redirected motion
First Solution: We will use the results of Problem 14, namely eqs. (2.123) and
(2.122), which say that an object projected from height y at speed v travels a maxi-
mum horizontal distance of

dmax =
v2

g

√
1 +

2gy

v2
, (2.125)

and the optimal angle yielding this distance is

sin θ =
1√

2 + 2gy/v2
. (2.126)

In the problem at hand, the object is dropped from a height h, so conservation of
energy (or integration of mv dv/dy = −mg) says that the speed at height y is

v =
√

2g(h− y). (2.127)

Plugging this into eq. (2.125) shows that the maximum horizontal distance, as a
function of y, is

dmax(y) = 2
√

h(h− y). (2.128)

This is maximum when y = 0, in which case the distance is dmax = 2h. Eq. (2.126)
then gives the associated optimal angle as θ = 45◦.

Second Solution: Assume that the greatest distance, d0, is obtained when y = y0

and θ = θ0. And let the speed at y0 be v0. We will show that y0 must be 0. We will
do this by assuming that y0 6= 0 and explicitly constructing a situation that yields a
greater distance.
Consider the situation where the ball falls all the way down to y = 0 and then bounces
up at an angle such that when it reaches the height y0, it is traveling at an angle θ0

with respect to the horizontal. When it reaches the height y0, the ball will have speed
v0 (by conservation of energy), so it will travel a horizontal distance d0 from this point.
But the ball already traveled a nonzero horizontal distance on its way up to the height
y0. We have therefore constructed a situation that yields a distance greater than d0.
Hence, the optimal setup must have y0 = 0. Therefore, the maximum distance is
obtained when y = 0, in which case the example in Section 2.4 says that the optimal
angle is θ = 45◦.
If we want the ball to go even further, we can simply dig a (wide enough) hole in the
ground and have the ball bounce from the bottom of the hole.

16. Maximum trajectory length
Let θ be the angle at which the ball is thrown. Then the coordinates are given by
x = (v cos θ)t and y = (v sin θ)t − gt2/2. The ball reaches its maximum height at
t = v sin θ/g, so the length of the trajectory is

L = 2
∫ v sin θ/g

0

√(
dx

dt

)2

+
(

dx

dt

)2

dt

= 2
∫ v sin θ/g

0

√
(v cos θ)2 + (v sin θ − gt)2 dt

= 2v cos θ

∫ v sin θ/g

0

√
1 +

(
tan θ − gt

v cos θ

)2

dt. (2.129)
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Letting z ≡ tan θ − gt/v cos θ, we obtain

L = −2v2 cos2 θ

g

∫ 0

tan θ

√
1 + z2 dz. (2.130)

We can either look up this integral, or we can derive it by making a z ≡ sinh α
substitution. The result is

L =
2v2 cos2 θ

g
· 1
2

(
z
√

1 + z2 + ln
(
z +

√
1 + z2

)) ∣∣∣∣
tan θ

0

=
v2

g

(
sin θ + cos2 θ ln

(
sin θ + 1

cos θ

))
. (2.131)

As a double-check, you can verify that L = 0 when θ = 0, and L = v2/g when θ = 90◦.
Taking the derivative of eq. (2.131) to find the maximum, we obtain

0 = cos θ − 2 cos θ sin θ ln
(

1 + sin θ

cos θ

)
+ cos2 θ

(
cos θ

1 + sin θ

)
cos2 θ + (1 + sin θ) sin θ

cos2 θ
.

(2.132)
This reduces to

1 = sin θ ln
(

1 + sin θ

cos θ

)
. (2.133)

Finally, you can show numerically that the solution for θ is θ0 ≈ 56.5◦.

Remark: A few possible trajectories are shown Fig. 2.30. Since it is well known that

y

x

45
path
θ=

Figure 2.30

θ = 45◦ provides the maximum horizontal distance, it follows from the figure that the θ0

yielding the arc of maximum length must satisfy θ0 ≥ 45◦. The exact angle, however, requires

the above detailed calculation. ♣

17. Maximum trajectory area

Let θ be the angle at which the ball is thrown. Then the coordinates are given by
x = (v cos θ)t and y = (v sin θ)t − gt2/2. The total time in the air is 2(v sin θ)/g, so
the area under the trajectory is

A =
∫ xmax

0

y dx

=
∫ 2v sin θ/g

0

(
(v sin θ)t− gt2

2

)
v cos θ dt

=
2v4

3g2
sin3 θ cos θ. (2.134)

Taking the derivative, we find that the maximum occurs when tan θ =
√

3, that is,
when

θ = 60◦. (2.135)

The maximum area is then Amax =
√

3v4/8g2. Note that by dimensional analysis, we
know that the area, which has dimensions of distance squared, must be proportional
to v4/g2.
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18. Bouncing ball
The ball travels 2h during the first up-and-down journey. It travels 2hf during the
second, then 2hf2 during the third, and so on. Therefore, the total distance traveled
is

D = 2h(1 + f + f2 + f3 + · · ·)
=

2h

1− f
. (2.136)

The time it takes to fall down during the first up-and-down is obtained from h = gt2/2.
Therefore, the time for the first up-and-down equals 2t = 2

√
2h/g. Likewise, the time

for the second up-and-down equals 2
√

2(hf)/g. Each successive up-and-down time
decreases by a factor of

√
f , so the total time is

T = 2

√
2h

g

(
1 + f1/2 + f1 + f3/2 + · · · )

= 2

√
2h

g
· 1
1−√f

. (2.137)

The average speed equals
D

T
=

√
gh/2

1 +
√

f
. (2.138)

Remark: The average speed for f ≈ 1 is roughly half of the average speed for f ≈ 0. This

may seem somewhat counterintuitive, because in the f ≈ 0 case the ball slows down far more

quickly than in the f ≈ 1 case. But the f ≈ 0 case consists of essentially only one bounce,

and the average speed for that one bounce is the largest of any bounce. Both D and T are

smaller for f ≈ 0 than for f ≈ 1, but T is smaller by a larger factor. ♣

19. Centripetal acceleration
The position and velocity vectors at two nearby times are shown in Fig. 2.31. Their

r1

r2

v1

v2

Figure 2.31

differences, ∆r ≡ r2 − r1 and ∆v ≡ v2 − v1, are shown in Fig. 2.32. The angle

r1

r

∆r

2

v1v

∆v

2

θ

θ

Figure 2.32

between the v’s is the same as the angle between the r’s, because each v makes a
right angle with the corresponding r. The triangles in Fig. 2.32 are therefore similar,
so we have

|∆v|
v

=
|∆r|

r
, (2.139)

where r ≡ |r| and v ≡ |v|. Dividing eq. (2.139) through by ∆t gives

1
v

∣∣∣∣
∆v
∆t

∣∣∣∣ =
1
r

∣∣∣∣
∆r
∆t

∣∣∣∣ =⇒ |a|
v

=
|v|
r

=⇒ a =
v2

r
. (2.140)

We have assumed that ∆t is infinitesimal here, which allows us to get rid of the ∆’s
in favor of instantaneous quantities.

20. Free particle
For zero force, eqs. (2.52) give

r̈ = rθ̇2,

rθ̈ = −2ṙθ̇. (2.141)
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Separating variables in the second equation and integrating yields
∫

θ̈

θ̇
= −

∫
2ṙ

r
=⇒ ln θ̇ = −2 ln r + C =⇒ θ̇ =

D

r2
, (2.142)

where D = eC is a constant of integration, determined by the initial conditions.21

Substituting this value of θ̇ into the first of eqs. (2.141), and then multiplying both
sides by ṙ and integrating, gives

r̈ = r

(
D

r2

)2

=⇒
∫

r̈ṙ = D2

∫
ṙ

r3
=⇒ ṙ2

2
= −D2

2r2
+ E. (2.143)

We want ṙ = 0 when r = r0, which implies that E = D2/2r2
0. Therefore,

ṙ = V

√
1− r2

0

r2
, (2.144)

where V ≡ D/r0. Separating variables and integrating gives
∫

rṙ√
r2 − r2

0

= V =⇒
√

r2 − r2
0 = V t =⇒ r =

√
r2
0 + (V t)2 ,

(2.145)
where the constant of integration is zero, because we have chosen t = 0 to correspond
with r = r0. Plugging this value for r into the θ̇ = D/r2 ≡ V r0/r2 result in eq.
(2.142) gives

∫
dθ =

∫
V r0 dt

r2
0 + (V t)2

=⇒ θ = tan−1

(
V t

r0

)
=⇒ cos θ =

r0√
r2
0 + (V t)2

.

(2.146)
Finally, combining this with the result for r in eq. (2.145) gives cos θ = r0/r, as
desired.

21. A force Fθ = ṙθ̇

With the given force, eqs. (2.52) become

0 = m(r̈ − rθ̇2),
mṙθ̇ = m(rθ̈ + 2ṙθ̇). (2.147)

The second of these equations gives −ṙθ̇ = rθ̈. Therefore,
∫

θ̈

θ̇
= −

∫
ṙ

r
=⇒ ln θ̇ = − ln r + C =⇒ θ̇ =

D

r
, (2.148)

where D = eC is a constant of integration, determined by the initial conditions.
Substituting this value of θ̇ into the first of eqs. (2.147), and then multiplying both
sides by ṙ and integrating, gives

r̈ = r

(
D

r

)2

=⇒
∫

r̈ṙ = D2

∫
ṙ

r
=⇒ ṙ2

2
= D2 ln r + E. (2.149)

Therefore,
ṙ =

√
A ln r + B , (2.150)

where A ≡ 2D2 and B ≡ 2E.

21The statement that r2θ̇ is constant is simply the statement of conservation of angular momen-
tum, because r2θ̇ = r(rθ̇) = rvθ. More on this in Chapters 6 and 7.
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