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Abstract. We prove asymptotical stability and instability theorems for 2×2

system of first-order linear dynamic equations on a time scale with complex-

valued functions as coefficients. To prove stability estimates and asymptotic
stability for a 2×2 system we use the integral representations of the fundamen-

tal matrix via asymptotic solutions, the error estimates, and the time scales

calculus.

1. Main Result

In this paper we study asymptotic stability of a system of linear dynamic equa-
tions on a time scale T∞ = T

⋂
(t0,∞) :

u∇(t) = A(t)u(t), (1.1)
where u∇ is the nabla derivative (see [6]), u(t) is a 2-vector function, and

A(t) =
(
a11(t) a12(t)
a21(t) a22(t)

)
(1.2)

is a 2× 2 matrix-function ld-differentiable on T∞.
Exponential decay and stability of solutions of dynamic equations on time scales

were investigated in recent papers [1, 10, 17, 9, 11, 16, 8] by using Lyapunov method.
We use different approach based on integral representations of solutions via asymp-
totic solutions and error estimates developed in [3, 15, 12, 13].

Denote
TrA(t) = a11(t) + a22(t), |A(t)| = det(A(t)). (1.3)

A time scale T is an arbitrary nonempty closed subset of the real numbers. We
assume supT = ∞.

For t ∈ T we define the backward jump operator ρ : T → T by

ρ(t) = sup{s ∈ T : s < t}, for all t ∈ T. (1.4)
The backward graininess function ν : T → [0,∞] is defined by ν(t) = t − ρ(t). If
ρ(t) < t or ν > 0 we say that t is left-scattered. If t > inf(T)and ρ(t) = t then t is
called left dense. If T has a right-scattered minimum m, define Tk = T− {m}.

For f : T → R and t ∈ Tk define the nabla derivative of f at t denoted f∇(t) to
be the number (provided it exists) with the property that given any ε > 0, there is
a neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ− s)| ≤ ε|ρ(t)− s| (1.5)
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for all s ∈ U .
The rest state u(t) = 0 of the system (1.1) is called stable if for any ε > 0 there

exists δ(T, ε) > 0 such that if |u(T )| ≤ δ(T, ε) then |u(t)| ≤ ε for all t ≥ T.
The rest state u(t) = 0 of the system (1.1) is called asymptotically stable if it is

stable, and attractive:

lim
t→∞

u(t) = 0. (1.6)

To prove asymptotic stability we establish stability estimates for dynamic sys-
tem (1.1) by using integral representations of the fundamental matrix of (1.1) via
asymptotic solutions, and calculus on time scales [5, 6].

A function f :∈ T → R is called ld-continuous (Cld(T)) provided it is continuous
at left-dense points in T and its right-sided limits exist (finite) at right dense points
in T. Ck

ld(T) is the class of functions for which nabla derivatives of order k exist
and are ld-continuous on T.

Denote by Lld(T) the class of functions f : T → R that are ld-continuous on T
and Lebesgue nabla integrable on T.

R+
ld = {K : T → R, K(t) ≥ 0, 1− νK(t) > 0, and K ∈ Cld(T)}. (1.7)

We assume that A ∈ Cld(T∞) and a12(t) 6= 0 for all t ∈ T∞.
The main idea of this paper is a special construction of the phase functions θ1,2

of asymptotic solutions of non autonomous system (1.1).
From a given non-trivial function θ ∈ C2

ld(T∞) we construct the function

k(t) =
a12(t)
2θ2(t)

(
θ(t)
a12(t)

)∇
. (1.8)

Here and further in the text we often suppressed dependance on t for simplicity.
Assuming 1− 2k(t)θ(t)ν(t) 6= 0 for all t ∈ T∞ we choose a phase function θ1(t)

as a solution of the equation:

νθ21 − 2θ1(1 + νθ) + 2θ +
TrA− ν|A| − 2kθ

1− 2kθν
= 0, (1.9)

which is the version of Liouville’s formula.
If ν > 0 then θ1 is the solution of the quadratic equation:

θ1 =
1
ν

+ θ +
√
D, D = θ2 +

1− νTrA+ ν2|A|
(1− 2kθν)ν2

, ν > 0. (1.10)

If ν = 0 then (1.9) turns to the linear equation:

2θ1 − TrA+ 2θ(k − 1) = θ1 + θ2 − TrA+
a12

θ

(
θ

a12

)′
= 0,

and in this case the function θ1(t) is defined from the formula

θ1(t) = θ(t)− a12(t)
2θ(t)

(
θ(t)
a12(t)

)′
+
TrA(t)

2
, ν(t) = 0. (1.11)

Define auxiliary functions

θ2(t) = θ1(t)− 2θ(t), Ψ(t) =

(
êθ1(t, t0) êθ2(t, t0)

(θ1−a11)beθ1 (t,t0)

a12(t)

(θ2−a11)beθ2 (t,t0)

a12(t)

)
, (1.12)
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Hovj = θ2j − θjTr(A) + |A| − a12(1− νθj)
(
a11 − θj

a12

)∇
, j = 1, 2, (1.13)

Q0(t) =
Hov1(t)−Hov2(t)

2θ(t)
, (1.14)

Mj = ‖(1− νΨ−1Ψ∇)−1‖ ·
∣∣∣∣ êjHovj

2θ · ê3−j

∣∣∣∣ , j = 1, 2. (1.15)

K(t) = c

(∣∣∣∣Hov1θ

∣∣∣∣+ σ

∣∣∣∣a12Q0

θ

∣∣∣∣) [1 + ν

(
‖A‖+

∣∣∣∣Hov1a12

∣∣∣∣+ σ|Q0|
)]

(t), (1.16)

where ‖ · ‖ is the Euclidean matrix norm: ‖A‖ =
√∑n

k,j=1A
2
kj , and êθ(t, t0) is the

nabla exponential function on a time scale (see [10, 6]).
Note that θ1 and θ2 can be used to form the approximate fundamental matrix

Ψ of system (1.1) in form (1.12).

Theorem 1.1. Assume a12(t) 6= 0, and there exists a non-trivial function θ ∈
C2

ld(T∞) such that Mj ∈ R+
ld, 1− νTrA+ ν2|A|(t) 6= 0, 1− 2kνθ(t) 6= 0 for all

t ∈ T∞, and
lim

t→∞
êMj

(t, t0) <∞, j = 1, 2. (1.17)

Then equation (1.1) is asymptotically stable if and only if the condition

lim
t→∞

(
θj − a11

a12

)k−1

êθj
(t, t0) = 0, k, j = 1, 2, (1.18)

is satisfied.

Remark 1.1. If one can find two different phase functions θj , j = 1, 2 such that
generalized characteristic equations Hovj(t) = 0 are satisfied, then from (1.15) we
get Mj ≡ 0, condition (1.17) disappears, and formula (1.12) with mentioned above
phase functions defines the exact fundamental solution of (1.1). Note also that for a
constant matrix A equations Hovj(t) = 0 turn to the usual characteristic equations
of system (1.1).

Condition (1.17) of Theorem 1.1 is complicated and it is very restrictive when

one of functions
∣∣∣ beθj

(t,t0)beθ3−j
(t,t0)

∣∣∣ has exponential growth as t→∞. In the next Theorem

1.2 we replace condition (1.17) by less restrictive and simple condition (1.19) under
some additional conditions.

Theorem 1.2. Assume a12(t) 6= 0, and exists a non-trivial function θ(t) ∈ C2
ld(T∞)

such that K ∈ R+
ld, 1 − νTrA + ν2|A|(t) 6= 0, 1 − 2kνθ(t) 6= 0, for all t ∈ T∞,

and there exist some constants β > 0 and σ > 1 such that

lim
t→∞

êK(t, t0) <∞, (1.19)

2<[θj(t)] ≤ ν(t)|θj(t)|2, j = 1, 2, t ∈ T∞, (1.20)∣∣1− ν (TrA+Q0) + ν2(|A|+ θ1Q0 −Hov1)
∣∣ ≥ β > 0, (1.21)

1 +
∣∣∣∣ (θj − a11)(t)

a12

∣∣∣∣ ≤ σ, j = 1, 2, t ∈ T∞, (1.22)



4 GRO HOVHANNISYAN

lim
t→∞

|êθj (t, t0)| = 0, j = 1, 2. (1.23)

Then equation (1.1) is asymptotically stable.

Note that if ν = 0, then condition (1.20) turns to the classical stability condition
<[θj(t)] ≤ 0. Condition (1.19) means that the error of the chosen asymptotic solu-
tion is small enough (compare with well known Levinson’s integrability condition
from [15]).
The next three lemmas from [1],[10],[17] are useful tools for checking condition
(1.23) .

Lemma 1.3. ([1],[10]) Let θ(t) be a complex valued function from Cld(T) such that
1− θ(t)ν(t) 6= 0 for all t ∈ T∞.

Then

lim
t→∞

êθ(t)(t, t0) = 0 (1.24)

if and only if

lim
T→∞

∫ T

t0

lim
p↘ν(s)

Log|1− pθ(s)|
−p

∇s = −∞. (1.25)

The following lemma gives a simpler sufficient conditions of decay of nabla expo-
nential function

Lemma 1.4. ([1],[10]) Assume θ(t) ∈ Cld(T), and for some ε > 0

lim
t→∞

∫ t

t0

<[θ(s)]∇s = −∞, if ν = 0, (1.26)

|1− θν(t)| ≥ eε > 1,
∫ ∞

t0

∇s
ν(s)

= ∞, if ν > 0. (1.27)

Then (1.24) is satisfied

Remark 1.2. [1] The first condition (1.27) for ν > 0 means that values of θ(t) are
located in the the exterior of the ball with the center 1

ν∗
and the radius eε

ν∗
:{

z :
∣∣∣∣z − 1

ν∗

∣∣∣∣ > eε

ν∗

}
, ν∗ = inf[ν(t)], (1.28)

and it may be written in the form

2<[θ(t)] < ν(t)|θ(t)|2. (1.29)

Remark 1.3. In view of Lemma 1.4 conditions (1.20),(1.23) of theorem 1.2 can
be replaced by ∫ ∞

t0

ds

ν(s)
= ∞, for ν > 0. (1.30)

2<[θj(t)] < ν(t)|θj(t)|2, t ∈ T∞, j = 1, 2. (1.31)
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The scalar equation
x∇(t) = θ(t)x(t) (1.32)

is called exponentially stable if there exists a constant α > 0 such that for every
t0 ∈ T there exist a N = N(t0) ≥ 1 with

‖êθ(t, t0)‖ ≤ N(t0)e−α(t−t0), for t ≥ t0. (1.33)

If the constant N(t0) from (1.33) can be chosen independent of t0, then equation
(1.32) is called uniformly exponentially stable.

Lemma 1.5 ([17]). Equation (1.32) is exponentially stable if and only if one of
following conditions is satisfied for arbitrary t1 ∈ T :

γ(θ) := lim sup
T→∞

1
T − t1

∫ T

t1

lim
p↘ν(s)

(log |1− pθ(s)|)∇s
−p

< 0, (1.34)

for every τ ∈ T : there exist t ∈ T with t > τ such that 1− ν(t)θ(t) = 0, (1.35)
where we use the convention log 0 = −∞ in (1.34).

Remark 1.4. In order to apply Theorem 1.2 for the study exponential stability
of dynamic system (1.1) one can replace condition (1.23) by the necessary and
sufficient condition of exponential stability of an exponential function on a time
scale given in Lemma 1.5.

2. Fundamental Matrix and Error Estimates

If we seek a solution of (1.1) in the form

u = Ψv, (2.1)

then from (1.1) we get

Ψ∇v + Ψv∇ − νΨ∇v∇ = AΨv,

Ψ(1− νΨ−1Ψ∇)v∇ = (AΨ−Ψ∇)v,
or

v∇(t) = H(t)v(t), (2.2)
where

H(t) = (1− νΨ−1Ψ∇)−1Ψ−1(AΨ−Ψ∇)(t). (2.3)
Assume we can find an exact solution of an auxiliary system

ψ∇(t) = A1(t)ψ(t), t ∈ T∞, (2.4)

with a matrix-function A1 close to the matrix-function A, which means that condi-
tion (2.6) below is satisfied. Note that if A = A1 then H ≡ 0 and (2.6) is satisfied.

Let Ψ(t) be the fundamental matrix of the auxiliary system (2.4). If the matrix-
function A1 is regressive and ld-continuous then Ψ(t) exists ([6]). The solutions of
(1.1) can be represented in the form

u(t) = Ψ(t)(C + ε(t)), (2.5)

where u(t), ε(t), C are the 2-vector columns: u(t) = column(u1(t), u2(t)), ε(t) =
colomn(ε1(t), ε2(t)), C = colomn(C1, C2), Cj are arbitrary constants. We can con-
sider (2.5) as a definition of the error vector-function ε(t).

In [12, 14] was proved the following



6 GRO HOVHANNISYAN

Theorem 2.1. Assume there exists a matrix function Ψ(t) ∈ C1
ld(T∞) such that

‖H‖ ∈ R+
ld, the matrix function Ψ−νΨ∇ is invertible, and the following exponential

function on a time scale is bounded:

ê‖H‖(∞, t) = exp

∫ ∞

t

lim
p↘ν(s)

Log(1− p‖H(s)‖)∇s
−p

<∞. (2.6)

Then every solution of (1.1) can be represented in form (2.5) and the error vector-
function ε(t) can be estimated as

‖ε(t)‖ ≤ ‖C‖
(
ê‖H‖(∞, t)− 1

)
, (2.7)

where ‖ · ‖ is the Euclidean vector (or matrix) norm.

To find the fundamental matrix function let us seek solutions of equation (1.1)

u∇1 = a11u1 + a12u2, u∇2 = a21u1 + a22u2, (2.8)

in the form
u1(t) = C1êθ1(t, t0) + C2êθ2(t, t0), (2.9)

where

êθj
(t, t0) = exp

(∫ t

t0

lim
p↘ν(τ)

Log(1− pθj(τ))
−p

∇τ
)
, j = 1, 2. (2.10)

By differentiation

u∇1 = C1θ1êθ1(t, t0) + C2θ2êθ2(t, t0), (2.11)

and from (2.8) assuming a12 6= 0 we get

u2 =
u∇1 − a11u1

a12
= C1U1êθ1(t, t0) + C2U2êθ2(t, t0), (2.12)

U1 =
θ1 − a11

a12
, U2 =

θ2 − a11

a12
, (2.13)

and
u(t) = Ψ(t)C, (2.14)

where the fundamental matrix Ψ(t) of system (1.1) is defined as

Ψ(t) =
(
êθ1(t, t0) êθ2(t, t0)
U1êθ1(t, t0) U2êθ2(t, t0)

)
=
(

1 1
U1 U2

)(
êθ1(t, t0) 0

0 êθ2(t, t0)

)
. (2.15)

Denote

Bj = (a11 − θj)(1− νθj)
U∇j
Uj

= a12(1− νθj)
(
a11 − θj

a12

)∇
, j = 1, 2, (2.16)

then from (1.13) we get

Hovj = Ej −Bj , Ej = θ2j − θjTr(A) + |A|, j = 1, 2. (2.17)

where Ej is usual characteristic polynomial of (1.1).

Lemma 2.2. Assume a12 6= 0, 1 − νTrA + ν2|A| 6= 0, 1 − 2kνθ 6= 0 for
all t ∈ T∞, Ψ ∈ Cld(T) is invertible and nabla differentiable. Then following
formulas are true:

|Ψ(t)| = det[Ψ(t)] = − 2θ
a12

êθ1(t, t0)êθ2(t, t0), (2.18)
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θ1 + θ2 − TrA+
B2 −B1

2θ
=
Hov1 −Hov2

2θ
, (2.19)

Ψ∇(t)Ψ−1(t) =
(

a11 a12

Q1 + a21 Q0 + a22

)
, (2.20)

where

Q0 =
Λ2U2 − Λ1U1

U2 − U1
− a22, Q1 =

(Λ1 − Λ2)U1U2

U2 − U1
− a21, (2.21)

or

Q0 =
Hov1 −Hov2

2θ
, Q1 =

U1Hov2 − U2Hov1
2θ

=
Hov1
a12

− U1Q0, (2.22)

Ψ−1(AΨ−Ψ∇)(t) =
1
2θ

 −Hov1 −beθ2beθ1
Hov2beθ1beθ2

Hov1 Hov1

 , (2.23)

TrA− ν|A| = 2kθ + (θ1 + θ2 − νθ1θ2)(1− 2kθν). (2.24)
Note that (2.24) is the version of Liouville’s formula.

Proof. From (2.13) we have

U2 − U1 =
θ2 − θ1
a12

= − 2θ
a12

, (2.25)

and formula (2.18) follows from (2.15) and (2.25).
From (2.15) we get the inverse matrix

Ψ−1(t) =
1

U2 − U1

(
1/êθ1(t, t0) 0

0 1/êθ2(t, t0)

)(
U2 −1
−U1 1

)
.

Formula (2.19) follows from (2.17).
From the time scales calculus we have

(ab)∇ = a∇b+ b∇a− νa∇b∇, ê∇θj
(t, t0) = θj êθj

(t, t0).

Nabla derivative of the Ψ matrix function is given by the formula

Ψ∇(t) =
(

θ1 θ2
Λ1U1 Λ2U2

)(
êθ1(t, t0) 0

0 êθ2(t, t0)

)
, (2.26)

where

Λj =
(Uj êθj )

∇

Uj êθj

= θj +
U∇j
Uj

(1− νθj) = θj −
Bj

a12Uj
, j = 1, 2. (2.27)

Formulas (2.20),(2.21) are proved by direct calculations:

Ψ∇(t)Ψ−1(t) =
1

U2 − U1

(
θ1 θ2

Λ1U1 Λ2U2

)(
U2 −1
−U1 1

)
=

1
U2 − U1

(
θ1U2 − θ2U1 θ2 − θ1

(Λ1 − Λ2)U1U2 Λ2U2 − Λ1U1

)
=
(

a11 a12

Q1 + a21 Q0 + a22

)
.

From (2.13),(2.17) we get

U2E1 − U1E2

2θ
=

(θ2 − a11)(θ21 − θ1TrA+ |A|)− (θ1 − a11)(θ22 − θ2TrA+ |A|)
2θa12

=
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a11(θ22 − θ21 + (θ1 − θ2)TrA) + θ1θ2(θ1 − θ2) + |A|(θ2 − θ1)
2θa12

= − P

a12
,

where
P = |A|+ a11(θ1 + θ2 − TrA)− θ1θ2. (2.28)

Further we prove formulas (2.22):

Q1 + a21 =
(Λ1 − Λ2)U1U2

U2 − U1
=
(

2θ +
B2U1 −B1U2

a12U1U2

)
U1U2a12

−2θ
=

−U1U2a12 −
B2U1 −B1U2

2θ
=

(a11 − θ1)(θ2 − a11)
a12

− B2U1 −B1U2

2θ
=

|A| − θ1θ2 + a11(θ1 + θ2 − a11 − a22)
a12

+ a21 +
U2(E1 −Hov1)− U1(E2 −Hov2)

2θ
=

=
P

a12
+ a21 +

U1Hov2 − U2Hov1
2θ

+
U2E1 − U1E2

2θ
=
U1Hov2 − U2Hov1

2θ
+ a21,

and

Q0 + a22 =
Λ2U2 − Λ1U1

U2 − U1
=
a11 − θ2

2θ

[
θ2 −

B2

U2a12

]
− a11 − θ1

2θ

[
θ1 −

B1

U1a12

]
=

a11θ2 − θ22 − a11θ1 + θ21
2θ

+
B2 −B1

2θ
=

= a22 + θ1 + θ2 − TrA+
B2 −B1

2θ
=
Hov1 −Hov2

2θ
+ a22,

in view of (2.19).
For j = 1, 2 we have
a12

2θ
(Q1 +Q0Uj) =

a12

2θ

(
U1Hov2 − U2Hov1

2θ
+

(Hov1 −Hov2)Uj

2θ

)
=
Hovj

2θ
,

from which formula (2.23) is deduced:

Ψ−1(AΨ−Ψ∇)(t) =
a12

2θ

 −Q1 −Q0U1 −(Q1 +Q0U2)
beθ2beθ1

(Q1 +Q0U1)
beθ1beθ2

Q1 +Q0U2

 =

1
2θ

 −Hov1 −beθ2beθ1
Hov2beθ1beθ2

Hov1 Hov2

 .

Formula (2.24) is proved by using the well known Liouville’s formula for (1.1)
(see [6], Theorem 3.9.4):

|Ψ(t)|∇

|Ψ(t)|
= TrA(t)− ν|A(t)|, (2.29)

or in view of (2.18):
a12

θe1e2

(
θe1e2
a12

)∇
= TrA− ν|A|.

From this formula using notation (1.8) we get formula (2.24):

TrA− ν|A| =
(
θ

a12

)∇
a12

θ
+

(êθ1 êθ2)
∇

êθ1 êθ2

− ν

(
θ

a12

)∇
a12

θ

(êθ1 êθ2)
∇

êθ1 êθ2

=

2kθ +
(êθ1 êθ2)

∇

êθ1 êθ2

(1− 2kθν) = 2kθ + (θ1 + θ2 − νθ1θ2)(1− 2kθν).
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�

Proof of Theorem 1.1. First note that from the assumption Mj ∈ R+
ld it follows

that the exponential functions êMj (t, t0) exist ([6]). From assumptions 1− νTrA+
ν2|A|(t) 6= 0, 1 − 2kνθ(t) 6= 0 it follows that 1 − νθj 6= 0 and the exponential
functions êθj

(t, t0) exist.
Consider system (1.1) or equivalent system (2.2). From (2.3), (1.15) and (2.23)

it follows that ‖H‖ ≤ ‖(1 − νΨ−1Ψ∇)−1Ψ−1(AΨ − Ψ∇)‖ ≤ maxj=1,2|Mj |, and
from condition (1.17) of Theorem 1.1 it follows that condition (2.6) of Theorem 2.1
is satisfied. Applying Theorem 2.1 we obtain representation (2.5) for the solutions
of (1.1) and estimate (2.7) for the error function ε. From (2.5),(2.7) we get the
stability inequality

‖u(t)‖ ≤ const‖Ψ(t)‖. (2.30)
From (1.18) it follows ‖Ψ(t)‖ → 0 as t→∞, and using (2.30) we obtain asymptotic
stability of (1.1).

�

Lemma 2.3. If conditions of Lemma 2.2 are satisfied and for some number σ > 1

1 +
∣∣∣∣θj − a11

a12

∣∣∣∣ ≤ σ, j = 1, 2, t ∈ T∞, (2.31)

|1− νθj | =
√

(1− ν<[θj ])2 + (ν=[θj ])2 ≥ 1, j = 1, 2, t ∈ T∞. (2.32)

Then
‖Ψ(s)‖ ≤ const, (2.33)

‖Ψ(t)Ψ−1(s)‖ ≤ C

∣∣∣∣a12(s)
θ(s)

∣∣∣∣ , s ≤ t, (2.34)

‖A−Ψ∇Ψ−1‖ ≤ |Q0|+ |Q1| ≤
∣∣∣∣Hov1a12

∣∣∣∣+ σ|Q0|. (2.35)

Proof. From (2.32) it follows that the functions |êθj
(t, t0)|, j = 1, 2, are non-

increasing.
Indeed, if ν > 0 then from (2.32) it follows that

Log|1− ν(t)θj(t)|
−ν(t)

≤ 0, (2.36)

so the functions

êθj (t, t0)| = exp

(∫ t

t0

lim
p↘ν(τ)

Log|1− pθj(τ)|
−p

∇τ
)
, j = 1, 2

are non increasing.
If ν ≡ 0 then the functions |êθj

(t, t0)| are non-increasing in view of

|êθj
(t, t0)|∇

|êθj
(t, t0)|

=
|êθj

(t, t0)|′

|êθj
(t, t0)|

= <[θj ] ≤ 0. (2.37)

Because the functions |êθj
(t, t0)|, j = 1, 2, are non-increasing we get

|êθj
(t, t0)| ≤ |êθj

(t0, t0)| = 1,
∣∣∣∣ êθj (t, t0)
êθj

(s, t0)

∣∣∣∣ ≤ 1, t ≥ s ≥ t0. (2.38)
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From condition (2.31) it follows that |Uj | ≤ C and inequality (2.33) is true. In-
equality (2.34) follows from the formula:

Ψ(t)Ψ−1(s) =
1

(U2 − U1)(s)
× beθ1 (t,t0)beθ1 (s,t0)

U2(s)−
beθ2 (t,t0)beθ2 (s,t0)

U1(s)
beθ2 (t,t0)beθ2 (s,t0)

− beθ1 (t,t0)beθ1 (s,t0)beθ1 (t,t0)beθ1 (s,t0)
U1(t)U2(s)−

beθ2 (t,t0)beθ2 (s,t0)
U1(s)U2(t)

beθ2 (t,t0)beθ2 (s,t0)
U2(t)−

beθ1 (t,t0)beθ1 (s,t0)
U1(t)

 . (2.39)

Further using (2.20),(2.22) we get estimate (2.35):

‖A−Ψ∇Ψ−1‖ ≤ |Q1|+ |Q0| =
∣∣∣∣Hov1a12

− U1Q0

∣∣∣∣+ |Q0| ≤
∣∣∣∣Hov1a12

∣∣∣∣+ σ|Q0|. (2.40)

�

Lemma 2.4. If conditions of Lemma 2.3 and (1.21) are satisfied then

‖Ψ(t)H(s)Ψ−1(s)‖ ≤ K(s), s ∈ T∞
⋂

[t0, t], (2.41)

where K(s) is defined in (1.16).

Proof. Denote

Ω(s) ≡ Ψ(1− νΨ−1Ψ∇)Ψ−1(s) = 1− νΨ∇Ψ−1 = 1− νA− ν

(
0 0
Q1 Q0

)
. (2.42)

Then
‖Ω‖ ≤ 1 + ν(‖A‖+ |Q1|+ |Q0|)
‖Ωco‖ ≤ 1 + ν(‖A‖+ |Q1|+ |Q0|),

where Ωco is the adjoint of the matrix Ω.
Using (2.22) we have

a11Q0 − a12Q1 = a11Q0 − a12

(
Hov1
a12

− U1Q0

)
= θ1Q0 −Hov1. (2.43)

From (2.20) we get

|det(Ω)| =
∣∣det[1− νΨ∇Ψ−1]

∣∣ = ∣∣∣∣det [ 1− νa11 −νa12

−ν(Q1 + a21) 1− ν(Q0 + a22)

]∣∣∣∣ =
|1− ν(Q0 + TrA) + ν2(|A|+ a11Q0 − a12Q1)|.

In view of (2.43)

|det(Ω)| = |1− ν(Q0 + TrA) + ν2(|A|+ θ1Q0 −Hov1)|,
and from assumption (1.21) we have

|det(Ω)| ≥ β > 0. (2.44)

Further

‖Ω−1‖ =
‖Ωco‖
|det(Ω)|

≤ 1 + ν(‖A‖+ |Q1|+ |Q0|)
|det(Ω)|

≤ 1 + ν(‖A‖+ |Q0|+ |Q1|)
β

and using (2.34), (2.35) we get

‖Ψ(t)H(s)Ψ−1(s)‖ ≤ ‖Ψ(t)Ψ−1(s)‖ · ‖Ψ(1− νΨ−1Ψ∇)−1Ψ−1(A−Ψ∇Ψ−1)‖(s) ≤

≤ C

∣∣∣∣a12(s)
θ(s)

∣∣∣∣ ‖Ω−1(A−Ψ∇Ψ−1)‖(s) ≤ C
∣∣∣a12

θ

∣∣∣ (|Q1|+|Q0|)(1+ν(‖A‖+|Q1|+|Q0|))
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≤ c

∣∣∣∣a12(s)
θ(s)

∣∣∣∣ (σ|Q0|+
|Hov1|
|a12|

)(
1 + ν(‖A‖+ σ|Q0|+

|Hov1|
|a12|

)
= K(s).

�

Lemma 2.5. [5, 12] Assume y, f ∈ Cld(T), f, y ≥ 0, K ∈ R+
ν . Then

y(t) ≤ f(t) +
∫ t

t0

K(s)y(s)∇s for all t ∈ T∞ (2.45)

implies

y(t) ≤ f(t) +
∫ t

t0

êK(t, ρ(s))K(s)f(s)∇s, for all t ∈ T∞. (2.46)

Proof of Theorem 1.2. By integration from the system (2.2) we get

v(t) = C +
∫ t

t0

H(s)v(s)∇s. (2.47)

Multiplying this representation by Ψ(t) we have

Ψ(t)v(t) = Ψ(t)C +
∫ t

t0

Ψ(t)H(s)v(s)∇s, (2.48)

or using notation u(t) = Ψ(t)v(t) we get

u(t) = Ψ(t)C +
∫ t

t0

Ψ(t)H(s)Ψ−1(s)u(s)∇s. (2.49)

In view of (2.41) we get

‖u(t)‖ ≤ ‖Ψ(t)C‖+
∫ t

t0

K(s)‖u(s)‖∇s. (2.50)

Using Gronwall’s inequality (2.46) to (2.50) we get the stability estimate

‖u(t)‖ ≤ ‖Ψ(t)C‖+
∫ t

t0

êK(t, ρ(s))K(s)‖Ψ(t)C‖∇s, t ∈ T∞. (2.51)

From (1.22), (1.23) it follows that

lim
t→∞

‖Ψ(t)C‖ = 0, (2.52)

so for any ε > 0 there exists t0 such that for t ∈ T∞ we have

‖Ψ(t)C‖ ≤ ε. (2.53)

Hence it follows from (2.51)

‖u(t)‖ = ε

(
1 +

∫ t

t0

êK(t, ρ(s))K(s)∇s
)
, t ∈ T∞. (2.54)

Further ∫ t

t0

êK(t, ρ(s))K(s)∇s = êK(t, t0)− êK(t, t), (2.55)

and so
‖u(t)‖ ≤ εêK(t, t0) ≤ Cε, (2.56)

from which we get asymptotic stability of dynamic system (1.1).
�
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Example 2.1. Consider system (1.1) with

A =
[

0 1
−q̄ −p̄

]
, q̄ =

b

tρ
, p̄ =

a

ρ
, t0 > 0, (2.57)

TrA = −p̄ = −a
ρ
, |A| = q̄ =

b

tρ
.

From (1.15) it follows that if exist two different phase functions such that gen-
eralized characteristic equation (see (1.13))

Hov(t) = θ2 − θTr(A) + |A| − a12(1− νθ)
(
a11 − θ

a12

)∇
= 0,

is satisfied, then Mj ≡ 0, j = 1, 2 and condition (1.17) of Theorem 1.1 disappears.
For the Euler system (1.1) with the matrix A(t) given by (2.57) this equation

turns to

Hov(t) = θ2(t) +
aθ(t)
ρ(t)

+
b

tρ(t)
+ (1− ν(t)θ(t))θ∇(t) = 0. (2.58)

Solution of this non-linear Riccati equation we seek in the form

θ(t) =
λ

t
.

In view of

θ∇(t)
θ(t)

= − 1
ρ(t)

, ν(t) = t− ρ(t), θ2j − νθ∇j θj =
tθ2j
ρ

characteristic equation (2.58) turns to

Hov(t) =
λ2 − (1− a)λ+ b

tρ(t)
= 0

or
λ2 − (1− a)λ+ b = 0,

which is the usual characteristic quadratic equation with solutions

λ1,2 =
1− a

2
± λ, λ =

√
(1− a)2

4
− b. (2.59)

Choosing the phase functions

θj(t) =
λj

t
, j = 1, 2, (2.60)

we have
Hovj(t) = Mj(t) ≡ 0.

Well known exact solutions of the Euler system can be constructed by using the
phase functions (2.60).

So condition (1.17) is satisfied and from Theorem 1.1 it follows the trivial result
that system (1.1) with matrix A(t) defined by (2.57) is asymptotically stable if and
only if the condition

lim
t→∞

θk−1
j êθj (t, t0) = 0, k, j = 1, 2 (2.61)

is satisfied.



ASYMPTOTIC STABILITY FOR 2 × 2 LINEAR DYNAMIC SYSTEMS ON TIME SCALES 13

Example 2.2. Consider system (1.1) with

A =
[

0 1
− tb

ρ(t)(t2+1) − a
ρ(t)

]
, t0 > 0, (2.62)

TrA = −a
ρ
, |A| = tb

ρ(t)(1 + t2)
.

For this system we can’t solve generalized characteristic equation

Hov(t) = θ2(t) +
aθ(t)
ρ(t)

+
tb

ρ(t)(t2 + 1)
+ (1− ν(t)θ(t))θ∇(t) = 0. (2.63)

Anyway choosing phase functions by formula (2.60), the same way as in Example
2.1, from (1.13) we get

Hovj(t) =
λ2

j + (a− 1)λj

tρ
+ |A| = − b

tρ(t)
+

tb

ρ(t)(1 + t2)
= − b

tρ(t)(1 + t2)
,

Q0 =
Hov1 −Hov2

2θ
≡ 0, K(t) ≤

∣∣∣∣CHov1θ

∣∣∣∣ ≤ C

tρ(t)(1 + t2)
. (2.64)

Condition (1.21) turns to the condition:∣∣∣∣1 +
atν(t) + bν2(t)

tρ(t)

∣∣∣∣ ≥ β > 0, for all t ∈ T∞. (2.65)

Condition (1.22) is satisfied and conditions (1.30), (1.31) turn to

2<[λj ] <
ν(t)
t
|λj |2,

∫ ∞

t0

∇s
ν(s)

= ∞, j = 1, 2. (2.66)

Using estimate (2.64) one can simplify condition (1.19):

lim
t→∞

êK0(t, t0) <∞, K0 =
C

t3ρ(t)
. (2.67)

So from conditions (2.65)-(2.67) in view of Theorem 1.2 it follows the asymptotic
stability of system (1.1) with matrix A(t) as in (2.62).

Note that of ν(t) ≡ 0 conditions (2.65), (2.67) are satisfied and (2.66) turns to
<[λj ] < 0.
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