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Abstract
The paper establishes local asymptotic representations for solutions of

linear singular hyperbolic equations by means of Fourier integral opera-
tors. It is assumed that the coefficients of the equations are unbounded
near a singular hyperplane t = 0. These representations generalize the
well known Levinson’s asymptotic theorem from the theory of ordinary
differential equations. They are useful for the study of some equations
of mathematical physics. Another application is in the study of correct-
ness of Cauchy problem for the partial differential equations with multiple
characteristics.

§1. INTRODUCTION

It is well known, that solutions of strictly hyperbolic equations with smooth

coefficients can be represented by means of Fourier integral operators. For

example, the equation of oscillating string

vtt = a2vxx, (1.1)

using Fourier transformation

v̂(t, ξ) =
∫

v(t, x) exp(−ixξ) dx

is replaced by the ordinary linear differential equation

v̂tt + a2ξ2v̂ = 0, (1.2)
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which has the general solution

v̂(t, ξ) = f̂(ξ) exp{iat | ξ |}+ ĝ(ξ) exp{−iat | ξ |}

with arbitrary functions f̂(ξ) and ĝ(ξ). Using inverse Fourier transformation

v(t, x) = (2π)−n

∫
v̂(t, ξ) exp(ixξ) dξ,

we get

v(t, x) = Φ1(t)f(y) + Φ2(t)g(y), (1.3)

where the operators Φ1(t) and Φ2(t) have integral representations

Φjf(y) = (2π)−n

∫
f(y) exp(iθj(t, x, y, ξ) dy dξ, j = 1, 2, (1.4)

θ1 = (x− y)ξ + at|ξ|, θ2 = (x− y)ξ − at|ξ|.

Here the functions f and g are from Sobolev spaces. For the second order partial

differential equation

Lu = utt − a2uxx + q(t, x)u = 0, t ∈]0, T [, x ∈ R, lim
t→0

q = ∞ (1.5)

the following question can be posed: under what restrictions on operators LΦj ,

j = 1, 2 solutions of (1.5) can be represented in the form

u(t, x) = Φ̂1(t)f(y) + Φ̂2(t)g(y), (1.6)

where

Φ̂j(t) = Φj(t) + εj(t, x), εj(t, x) → 0, t → 0, j = 1, 2. (1.6′)

Φj(t) are called asymptotic resolvent operators, εj(t, x) are called error func-

tions.
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For more general strictly hyperbolic (or hyperbolic in Petrovsky’s sense)

equations the solutions u(t, x) admit representations (see [2], [7])

u(t, x) =
m∑

j=1

Φ̂j(t)Cj(y), (1.7)

where Cj(y) are arbitrary functions from Sobolev spaces and Φ̂j are linear in-

tegral operators, that can be represented as sums of Fourier integral operators.

Below we prove the following asymptotic versions of the representations (1.7) for

the solutions of a wide class of t-hyperbolic (non-strictly hyperbolic, weakly hy-

perbolic) operators with coefficients unbounded on the initial hyperplane t = 0:

u(t, x) =
m∑

j=1

[Φj(t) + εj(t, y)]gj(y), lim
t→0

εj(t, y) = 0, j = 1, . . . ,m. (1.8)

We apply (1.8) in the study initial value problems near singular hyperplane.

§2. THE MAIN RESULTS

This section contains formulations of the theorems and propositions, proved in

the paper. Theorem 2.1 provides a sufficient criterion of asymptotic resolvent

operators. Theorem 2.2 is an existence and uniqueness theorem for weighted

initial value problem, generalizing the initial value problem with Wronskian data

considered in [10]. Propositions 2.1, 2.3, 2.4 are particular cases of theorem

2.2 for second order partial differential equations with simplified initial data.

In Propositions 2.2, 2.5 we propose a construction of linear integral operators

that occur in asymptotic representations (2.13). Note that Proposition 2.2 is a

generalization of the JWKB asymptotics well known in the theory of ordinary

differential equations for hyperbolic partial differential equations.

We consider the partial differential equation

Pu =
m∑

k=0

Qm−k(t, x,Dx)∂k
t u(t, x) = 0, t ∈ [0, T ], x ∈ Rn, (2.1)

3



where

Q0 = 1, Qj ∈ C∞(]0, T ],Ψj
ρ), j = 1, ...,m, (2.2)

and Ψj
ρ is a class of pseudodifferential operators to be defined below. By B we

denote the set of all C∞-functions, defined and bounded in Rn
x with derivatives

of all orders. Let Bk
t = Ck([0, T ], B). We say that a C∞-function p(x, y, ξ)

in R3n = Rn
x × Rn

y × Rn
ξ belongs to Sm

ρ,δ (0 ≤ δ < 1/2 < ρ ≤ 1), if for any

multi-indices α, β, γ we have

| ∂α
ξ ∂β

x∂γ
y p(x, y, ξ)| ≤ Cα,β,γ < ξ >m+δ|β+γ|−ρ|α| on R3n, (2.3)

where < ξ >= (1 + ξ2
1 + · · ·+ ξ2

n)1/2. As usual Sm
ρ,δ are Frechet spaces provided

with seminorms

|p|(m)
l = max

α+β+γ|≤l
inf{Cα,β,γ of (2.3)}. (2.4)

We say that a symbol p(x, ξ) of class Sm
ρ = Sm

ρ,1−ρ belongs to the class Sm
ρ ((k)),

where k ≥ 0 is an integer, if

p
(α)
(β)(x, ξ) ∈ Sm−|α|)

ρ (| α + β |≤ k).

We say that real-valued C∞-function I(x, ξ) in Rn
x × Rn

ξ belongs to the class

Pρ(τ), where 0 ≤ τ ≤ 1 and 1/2 ≤ ρ ≤ 1 (see [4]), if J(x, ξ) = ϕ(x, ξ) − xξ

satisfies

J(x, ξ) ∈ S1
ρ((2)),

||J ||0 =
∑

|α+β≤2

sup
x,ξ
{|J (α)

(β) (x, ξ)| < ξ >(|α|−1)≤ τ.

In particular, for ρ = 1 we write P(τ). For any integer l ≥ 1, we define the sub-

class P(τ, l) of Pρ(τ) to be the set of phase functions I(x, ξ) ∈ Pρ(τ) satisfying

J(x, ξ) ∈ S1
ρ((2)),
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||J ||l =
∑

|α+β|≤1

sup
x,ξ
{|J (α)

(β) (x, ξ)| < ξ >(|α|−1) +

+
∑

2≤|α+β|≤2+l

sup
x,ξ
{|J (α)

(β) (x, ξ)| < ξ >1−(ρ−1)|β|+ρ(|α|−2)} ≤ τ,

and write P(τ, l) for P1(τ, l) for ρ = 1. Let ϕ(x, ξ) ∈ Pρ(τ). For p(x, ξ) ∈ Sm
ρ we

define the Fourier integral operator P with phase function ϕ(x, ξ) and symbol

p(x, ξ) by

Pu(x) = PIu(x) = (2π)−2n

∫
ei(I(x,ξ)−yξ)p(x, ξ)u(y) dξ dy, for u ∈ B (2.5)

in the sense of regularized oscillatory integrals ([4]). We write P ∈ Im
ρ and

σ(P ) = p(x, ξ). For ρ = 1 we shall often write Im for Im
ρ .

Let Ψm
ρ,δ be the class of pseudodifferential operators with symbols from Sm

ρ,δ

(Ψm
ρ = Ψm

ρ,1−ρ, Ψm = Ψm
1,0), Ĩm be the class of linear integral operators, map-

ping Hs to Hs−m. Recall that an operator (2.1) is called t-hyperbolic (or weakly,

non strictly hyperbolic), if the roots τ = λj(t, x, ξ), j = 1, ...,m, of the charac-

teristic equation
m∑

k=0

qm−k(t, x, ξ)τk = 0, q0 = 1

are real-valued for every t ∈]0, T [, (x, ξ) ∈ R2n. Here qm−k(t, x, ξ) are the

principal symbols of the operators Qm−k. We suppose that the functions qm−k,

k = 0, 1, . . . ,m are real-valued for every t ∈]0, T ], x ∈ Rn, ξ ∈ Rn.

Let the operators {Φj(t)}m
j=1 from (1.7) be given. Instead of the operators

Φj ∈ Ĩ1−j we can construct auxiliary linear integral operators

Φs+1,s(t), Φ−1
s+1,s(t) ∈ Ĩ0, s = 0, . . . m− 1. (2.8)

Indeed, we define

Φj,s(t) = Φs+1,s(t)Zj,s+1(t), j = s + 2, . . . m, s = 0, . . . ,m− 2, (2.9)

5



Φj,0 = Φj , j = 1, . . . ,m, (2.9′)

Zj,s+1(t) =
∫ t

T

Φj,s+1(τ) dτ, j = s + 2, ..,m, s = 0, . . . ,m− 2. (2.9′′)

From (2.9) we get

Φs+2,s = Φs+1,s

∫ t

T

Φs+2,s+1(τ) dτ, s = 0, . . . m− 1,

and Φs+1,s(t) can be determined from these expressions recurrently. In partic-

ular,

Φ1(t) = Φ1,0(t), Φ2(t) = Φ1,0(t)
∫ t

T

Φ2,1(τ) dτ,

Φ3,0(t) = Φ1,0(t)
∫ t

T

(
Φ2,1(τ)

∫ τ

T

Φ3,2(s) ds

)
dτ. (2.10)

We consider the operators

Ks
j = {− (Φ2,1Φ3,2 · · ·Φm,m−1)−1PΦj , if j = 1, . . . ,m, s = m,

Ks
j =

∑
(−1)kZj1,sZj2,j1 · · ·Zjk,jk−1K

m
j , if j = 1, . . . ,m, s < m. (2.11)

where summations are over all indexes j1, . . . , jk, such that

s < j1 < j2 < · · · < jk = m, k = 1, . . . ,m− s, s = 1, . . . ,m− 1. (2.11′)

Theorem 2.1 Let the functions βs(t) ≥ 0, βs ∈ L1[0, T ], s = 1, . . . ,m

and infinitely differentiable by parameter t ∈]0, T ], invertible linear integral

operators {Φj(t)}m
j=1, satisfy the conditions (2.8) and

(1/βs(t))Ks
j (t) ∈ Ĩ0, s, j = 1, . . . ,m, (2.12)

uniformly in t ∈]0, T [. Then for any choice of functions Cj(y) ∈ B, j = 1, . . . ,m,

exists a solution u ∈ B∞
t of the equation (2.1) representable in the form:

∂k−1
t u =

m∑
j=1

(∂k−1
t Φj)[Cj(y) + εj(t, y)], k = 1, . . . ,m, (2.13)
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lim
t→0

||εj(t, .)||p = 0, j = 1, . . . ,m, for some p ∈ R. (2.13′)

Remark 2.1. Theorem 2.1 gives no construction of the operators Φj , but it

is useful, because one can choose approximate operators Φj in different ways,

depending on the equation.

Remark 2.2. Let P2 be the operator (2.1) in case m = 2. In this case the

conditions (2.8), (2.12) of Theorem 2.1 become

Φ1,Φ−1
1 ∈ Ĩ0, (2.14)

Φ2,1,Φ−1
2,1 ∈ Ĩ0, (2.15)

β−1
s (t)Φ−1

j (Φ1tΦ−1
1 − Φ2tΦ−1

2 )−1P2Φs ∈ Ĩ0, s, j = 1, 2. (2.16)

Remark 2.3. Let Φ2,1 be the solution of the Cauchy problem

P1Φ2,1 ≡ ∂tΦ2,1 + (Φ−1
1 Q1Φ1 + 2Φ−1

1 Φ1t)Φ2,1 = 0, Φ2,1(T ) = I, (2.17)

where I is the identity operator. In this case the operator Φ2,1 can be con-

structed as a Fourier integral operator modulo smooth operator (see Theorem

3.3 or [3],[4]). More precisely, there exist Φ̃2,1(t) ∈ I0, such that

Φ2,1(t)− Φ̃2,1(t) ∈ Bt(S−∞). (2.17′)

In view of (2.10) and

P2Φ2(t) = P2

(
Φ1(t)

∫ t

T

Φ2,1(τ) dτ

)
= P2Φ1(t)

(∫ t

T

(Φ2,1(τ) dτ

)
+ Φ1P1Φ2,1,

or

P2Φ2(t) = (P2Φ1(t))
(∫ t

T

Φ2,1(τ) dτ,

)
, (2.18)
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the conditions (2.16) can be ignored for s = 2. For s = 1 the conditions (2.16)

reduces to the existence of β(t) ∈ L1([0, T ]), such that,

β−1(t)PΦ1 ∈ Ĩ0. (2.19)

Remark 2.4. If the symbol r of the operator

R = Φ−1
1 (Q1Φ1 + 2Φ1t) (2.20)

satisfies the conditions

r ∈ B1
t (S1), (2.21)

principal symbol of R is real-valued function for any t ∈ (0, T ], (x, ξ) ∈ R2n,

(2.22)

then the solution of the equation (2.17) satisfies (2.17’) (see Theorem 3.3). We

define auxiliary operators

As,s−1 = Φ−1
s,s−1(t)∂t, s = 2, . . . m, (2.23)

and denote by σ = (1, 2, . . . ,m) the cyclic permutation from the group of per-

mutations of m numbers. We choose the initial conditions for the equation (2.1)

to be

lim
t→0

{σjAm,m−1 . . . A3,2A2,1Φ−1
1 u} = Cj+1(y), j = 0, . . . ,m− 1, (2.24)

where Cj+1(y) are arbitrary functions from B and the powers of σ act on indexes

of the operators As,s−1 in (2.24).

Theorem 2.2 Let the conditions (2.2), (2.8), (2.12) be satisfied and there

exist functions µk(t, x), µ(t, x) ∈ B and numbers rkj , δk ≥ 0, such that

µk(∂k
t Φ1)−1∂k

t Φj ∈ Ĩrkj , k = 0, . . . ,m− 1, j = 2, . . . ,m, (2.25)
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µmΦ−1
1 Qm−k(∂k

t Φ1)−1µ−1
k ∈ Ĩδk , (2.26)

uniformly in t ∈ [0, T ] (one can put δk = m).

Then the initial value problem (2.1), (2.24) for Cj ∈ B, j = 0, 1, . . . ,m− 1,

has a unique solution u ∈ B∞
t (]0, T ]), and there exists a positive constant c,

such that for any solution u ∈ Bm
t of the problem (2.1), (2.24) the estimates

||µk(∂k
t Φ1)−1∂k

t u||s ≤ c
m∑

j=1

||Cj ||s+rkj
, k = 0, . . . ,m− 1, (2.27)

||µmΦ−1
1 ∂m

t u||s ≤
m∑

j=1

||Cj ||s+rkj+δk
(2.28)

hold.

For the second order equations from Theorem 2.2 follows the following propo-

sition.

Proposition 2.1 Let the conditions (2.2), (2.14) – (2.16) be fulfilled and

there exist numbers δ, r, b ≥ 0 and functions µ1,2(t, x) ∈ B, such that

µ1Φ−1
1t Φ2t ∈ Ĩr, µ2Φ−1

1 Q2Φ1 ∈ Ĩδ, (2.29)

µ2Φ−1
1 Q1Φ1tµ

−1
1 ∈ Ĩb (2.30)

hold. Then the equation

P2u = (∂2
t + Q1∂t + Q2)u = 0 (2.31)

with initial data

lim
t→0

{Φ−1
3−j(Φ1tΦ−1

1 − Φ2tΦ−1
2 )−1(ut − ΦjtΦ−1

j u)} = Cj(y), j = 1, 2, (2.32)

for Cj ∈ B, has a unique solution u ∈ B∞
t , and there exists a positive constant

c, such that for every solution u of the problem (2.31), (2.32) the estimates

||µk(∂k
t Φ1)−1∂tu||s ≤ c

2∑
j=1

||Cj ||s+r, k = 0, 1, µ0 = 1, (2.33)
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||µ2Φ−1
1 utt||s ≤ c

2∑
j=1

||Cj ||s+r+δ (2.34)

hold, where µ0 = 1.

Consider the equation

P2u =
(
∂2

t + Q4(t, x, ∂x)
)
u(t, x) = 0, t ∈]0, T [, x ∈ Rn, (2.35)

where Q is invertible in H−∞ = ∪Hs elliptic pseudodifferential operator of

order 1/2 infinitely differentiable by parameter t ∈]0, T ]. Let Φj(t, T ), j = 1, 2

be the resolving Fourier integral operators of the first order pseudodifferential

equation

∂twj + Λj(t, x, ∂x)wj(t, x) = 0, t ∈]0, T [, x ∈ Rn, (2.36)

where the operators Λ1,Λ2 (with symbols λ1, λ2) are defined to be

Λ1 = iQ2 −Q−1Qt, Λ2 = −iQ2 −Q−1Qt, (2.37)

that is, the solutions wj(t, x) of the equation (2.36) is representable in the form

wj(t, x) = Φj(t, T )wj(T, x), j = 1, 2. (2.38)

Proposition 2.2 Let there exist functions ρ1(t), ρ2(t) ≥ 0; µ(t), ρ1(t), ρ2(t) ∈

L1[ε, T ], ε > 0, such that

σ(µ(t)Q2) ∈ B∞
t (S1), σ(µQ−1Qt) ∈ B∞

t (S0), (2.39)

P2 is t-hyperbolic operator, (2.40)

ρ−1
1 (t)Q−3[Qt, Q]Q, ρ−1

2 (t)Q−2(Q−1)ttQ ∈ Ψ0
ρ, (2.41)

uniformly in t ∈ [0, T ]. Then for every choice of Cj(y) ∈ B, j = 1, 2 there exists

a solution u ∈ B∞
t of the equation (2.35) that can be written in the form (2.13),
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(2.13’) with m = 2, where Φ1,Φ2 are the resolving operators of the equation

(2.36).

Remark 2.5. The condition (2.40) for the equation (2.35) means, that the

principal symbol of Q2 is real-valued on [0, T ]×R2n
x,ξ.

Denote by || · ||Ψm
ρ

the norm of pseudodifferential operator from the class

Ψm
ρ : || · ||Ψm

ρ
= C|p|(m)

l , see Theorem 3.2 in §3.

Proposition 2.3 Under the conditions of Proposition 2.2, if

||Q−3Qt||Ψ0
ρ

< 1 uniformly by t ∈ [0, T ], (2.42)

then the equation (2.35) with C1, C2 ∈ Hp and initial data

lim
t→0

Φ2(T, t)(Q−2∂t + i−Q−3Qt)u = C1(x),

lim
t→0

Φ1(T, t)(Q−2∂t − i−Q−3Qt)u = C2(x), (2.43)

has unique solution u ∈ B∞
t . A positive constant c exists which does not depend

on u, such that

||µ0Φ−1
1 u||s, ||µ1Φ−1

1t ut||s ≤ c

2∑
j=1

||Cj ||s+2, ||µ2Φ−1utt||s ≤ c

2∑
j=1

||Cj ||s.

(2.44)

Introduce the class

M = {p(t) ∈ C∞(]0, T ]), p(t) > 0, ptp
−5/4 ∈ L2([0, T ]), |ptp

−3/2| ≤ ε},

(2.45)

where ε is sufficiently small positive number.

Proposition 2.4 Let there exist a function p(t) ∈ M , such that the condi-
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tions (2.39), (2.40) and

p1/4(t)Q−1 ∈ Ψ−1/2, (p/pt)2[Q,Qt] ∈ Ψ1, (2.46)

p−1/4(p/pt)j(∂j
t Q) ∈ Ψ1/2, j = 0, 1, 2 (2.47)

are satisfied, where [·, ·] is the commutator. Then the problem (2.35), (2.43) for

C1 ∈ Hp, C2 ∈ Hp−1 has unique solution u ∈ B∞
t , and there exists a positive

constant c, such that for every solution u of this problem the estimates

τ(t)p1/4−k/2(t)||∂k
t u||s ≤

2∑
j=1

||Cj ||s, k = 0, 1, 2 (2.48)

hold. Here

τ(t) = exp
(∫ t

T

(p(s))1/2ds

)
.

Remark 2.6. If we replace the condition (2.40) by

Q2 − (Q2)∗ ∈ Ψ0, (2.49)

then the estimates (2.48) simplifies:

p1/4−k/2(t)||∂k
t u||s ≤ c

2∑
j=1

||Cj ||s+k, k = 0, 1, 2. (2.50)

Proposition 2.4 has been proved in the [8] by a different method. We can

obtain different asymptotic solutions of the equation

utt + Qu = 0, t ∈]0, T [, x ∈ Rn, Q ∈ Ψ2, (2.51)

if we represent the solutions of (2.51) in the form u = Φ(t)v(t, x), where Φ is the

resolving Fourier integral operator of the first order pseudodifferential equation

{Φ t = (A1 + · · ·+ Ar)Φ, t ∈]O, T [,Φ
∣∣
t=T

= I.
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Above I is the identity operator and Ai are the pseudodifferential operators,

that can be found from recurrent relations

A1t + Q = 0,

Ajt+A2
j−1+Aj(A1+· · ·+Aj−1)+(A1+· · ·+Aj−1)Aj = 0, j = 2, .., r. (2.52)

From (2.52) it is easy to deduce, that

Φtt + QΦ = A2
r. (2.53)

Let Φ2,1 be the solution of the first order operator equation

(∂t + 2Φ−1Φt)Φ2,1 = 0, Φ2,1

∣∣
t=0

= I,

where

Φ2(t) = Φ(t)
∫ t

T

Φ2,1(τ) dτ.

Proposition 2.5 Let there exist a non-negative function β(t) from the class

L1([0, T ]), such that

Φ,Φ−1,Φ2,1,Φ−1
2,1 ∈ I0, β−1(t)A2

r ∈ Ψ0
ρ,

and principal symbol of Q is non-negative function on [0, T ] × R2n. Then for

C1(x), C2(x) ∈ H∞ a solution of the equation (2.53) exists, representable in the

form

∂k
t u = [Φ(k)(t) + ε1(t, x)]C1(x) + [Φ(k)

2 (t) + ε2(t, x)]C2(x),

where

lim
t→0

εk(t, .) = 0, k = 0, 1, uniformly by x ∈ Rn.

§3. PROOF OF THEOREM 2.1
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Assume that

λ1(t, x, ξ) = λ̃1(t, x, ξ) + λ(t, x, ξ), (3.1)

λ̃1(t, x, ξ) ∈ B1
t (S1), λ ∈ B1

t (S0), λ̃1 is real-valued. (3.2)

We are looking for the phase function of the operator (2.5), I(t, s) = I(t, s;x, ξ) ∈

B2
t (S1) on 0 ≤ s ≤ t ≤ T0 for some T0 (0 < T0 ≤ T ) as a solution of the Cauchy

problem

∂tϕ− λ1(t, x,∇xϕ) = 0, on 0 ≤ s ≤ t ≤ T0, (3.3)

ϕ(s, s;x, ξ) = xξ. (3.3′)

Equation (3.3) is called the eikonal equation. For {q, p} = {(q1, . . . , qn), (p1, . . . , pn)}

we consider the system of Hamilton equations

∂q

∂t
= −∇pλ1(t, q, p),

∂p

∂t
= ∇qλ1(t, q, p), {q, p}t=s = {y, η}. (3.3′′)

Theorem 3.1 ([4], Theorem 3.1) Let y = y(t, s;x, ξ) (0 ≤ s ≤ t ≤ T2)

be the inverse mapping of x = q(t, s; y, ξ) : y 7−→ x, Rn 7−→ Rn
x with (t, s, ξ) a

parameter, and define

u(t, s; y, η)− yη =
∫ t

s

[λ1 − p∇ξλ1](τ, q(τ, s; y, η), p(τ, s; y, η) dτ. (3.4)

Then the solution of Cauchy problem (3.3), (3.3’) can be written as I(t, s;x, ξ) =

u(t, s; y(t, s;x, ξ), ξ). Setting J(t, s) = J(t, s;x, ξ) = ϕ(t, s;x, ξ)− xξ, we have

{J(t, s)/(t− s), ∂tJ(t, s), ∂sJ(t, s)}0≤t,s≤T0 is bounded in S1. (3.5)

Corollary 3.1. (1) For any integer ν ≥ 0 there exist cν and Tν (0 < Tν ≤ T0)

such that

I(t, s;x, ξ) ∈ P(cν |t− s|, ν), 0 ≤ t, s ≤ Tν . (3.5′)
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(2) If in Theorem 3.1, for 1 ≤ m < ∞

λ(t, x, ξ) ∈ Bm
t (S1) on [0, T ],

then

{J(t, s)/(t− s), ∂j
t ∂k

s J(t, s); j + k ≤ m + 1}0≤t,s≤T0

is bounded in S1.

Theorem 3.2 ([4], Theorem 2.3) Let P ∈ Im
ρ . Then for any real s the

operator P defines continuous mappings from Hs+m into Hs. There exist a

constant C = C > 0 and an integer l = l(s,m) ≥ 0 such that

||Pu||s ≤ C|p|(m)
l ||u||s+m, for u ∈ Hs+m. (3.6)

Theorem 3.3 ([4], Theorem 3.2) Consider the operator L = ∂t−Λ(t, x,Dx).

Assume that λ = σ(Λ) satisfies the conditions (3.1), (3.2). Then there exists a

linear integral operator E(t, s) ∈ Ĩ0, such that

E(s, s) = I, LtE(t, s) = 0 on 0 ≤ s ≤ t ≤ T0.

The operator E(t, s) is Fourier integral operator modulo smooth operators:

there exist an operator Ẽ with a symbol e(t, s;x, ξ) ∈ B1
t (S0) (0 ≤ s ≤ t ≤ T0

with T0 as in Corollary 3.1), such that

Ẽϕ(t, s) ∈ I0, Ẽ(t, s)− E(t, s) ∈ Bt(S−∞).

Denote auxiliary functions {uj(t, y)}m
j=1 by the expressions

∂k−1
t u(t, x) =

m∑
j=1

[∂k−1
t Φj(t)]uj(t, y), k = 1, . . . ,m. (3.7)

Resolving the relations (3.7) by uj , we have

uj(t, y) = σjAm,m−1 · · ·A3,2A2,1Φ−1
1 u, j = 1, . . . ,m, (3.8)
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where the linear integral operators As,s−1 are defined from (2.23), and σ is the

cyclic permutation from the group of permutations of m numbers (1, . . . ,m).

Let us prove (3.8) in the particular case m = 3. We eliminate u1(t, y) from the

system

u = Φ1u
1 + Φ2u

2 + Φ3u
3,

ut = Φ1tu
1 + Φ2tu

2 + Φ3tu
3,

utt = Φ1ttu
1 + Φ2ttu

2 + Φ3ttu
3 (3.7′)

applying (Φ−1
1 )t to the left side of the first relation and Φ−1

1 to the left side of

the second relation. After adding these expressions we get

(Φ−1
1 Φ2)tu

2 + (Φ−1
1 Φ3)tu

3 = (Φ−1
1 u)t.

Applying (Φ−1
1 )tt to the left side of the first relation in (3.7’), (2Φ−1

1 )t to the

second, and Φ−1
1 to the third relation in (3.7’) and adding we get

(Φ−1
1 Φ2)ttu

2 + (Φ−1
1 Φ3)ttu

3 = (Φ−1
1 u)tt.

That is, we get

Φ2,1tu
2 + Φ3,1tu

3 = (Φ−1
1 u)tt, Φ2,1u

2 + Φ3,1u
3 = (Φ−1

1 u)t. (3.9)

Now we eliminate u2 from (3.9) applying Φ−1
21 to the first relation in (3.9), (Φ−1

21 )t

to the second relation and adding, we get

(Φ−1
2,1Φ3,1)tu

3 = (Φ−1
2,1(Φ

−1
1 ut)t),

or

u3 = Φ−1
3,2∂t(Φ−1

2,1∂t(Φ−1
1 u)) = A3,2A2,1Φ−1

1 u, (3.10)
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where

Φ2(t) = Φ1(t)
∫ t

T

Φ2,1(y) dy, Φ3(t) = Φ1(t)
∫ t

T

Φ3,1(y) dy,

Φ3,1 = Φ2,1(t)
∫ t

T

Φ3,2(y) dy, A3,2 = Φ−1
3,2∂t, A2,1 = Φ−1

2,1∂t. (3.11)

By index permutation we have

u1 = (1, 2, 3)u3 = A1,3A3,2Φ−1
2 u, u2 = (1, 2, 3)2u3 = A2,1A1,3Φ−1

3 u. (3.12)

The relations (3.8) in general case are proved similarly. Differentiating (3.7) in

t, in view of (2.1), we get

m∑
j=1

(∂tΦk
j )∂tu

j = −δkm

m∑
j=1

(Pj)uj , k = 1, . . . ,m, (3.13)

where δkm is Kronecker symbol. The relations (3.13), in view of (2.9) – (2.9”),

become

∂tu
s +

m−s∑
j=1

Zj+s,s(t)∂tu
j+s = 0, s = 1, . . . ,m− 1,

∂tu
m = −(Φ2,1Φ3,2 . . .Φm,m−1)−1

m∑
j=1

(PΦj)uj . (3.14)

Resolving the relations (3.14) relative to ∂tu
s, we get

∂tu
s =

m∑
j=1

Ks
j u, s = 1, . . . ,m, (3.15)

where the linear integral operators Ks
j are defined by (2.11). We show how to

obtain (2.11) in particular case m = 3. By differentiation (3.7’) in t we have

Φ1u
1
t + Φ2u

2
t + Φ3u

3
t = 0, Φ1tu

1
t + Φ2tu

2
t + Φ3tu

3 = 0,

Φ1ttu
1
t + Φ2ttu

2
t + Φ3ttu

3
t = −(P3Φj)uj ,

where

P3Φj = (∂3
t + Q1∂

2
t + Q2∂t + Q3)Φj .
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In view of

Φ2 = Φ1Z2,1, Φ3 = Φ1Z3,1, Z3,1 =
∫ t

T

Φ3,1(s) ds, Φ3,1 = Φ2,1Z3,2,

(see (2.9) – (2.9”)) we obtain

u1
t + Z2,1u

2
t + Z3,1u

3
t = 0, u2

t + Z3,2u
3
t = 0, Φ1Φ2,1Φ3,2u

3
t = −P3Φju

j ,

that is (3.15), where

K3
j = −(Φ1Φ2,1Φ3,2)−1P3Φj ,

K1
j = (Z2,1Z3,2 − Z3,1)K3

j , K2
j = −Z3,2K

3
j . (2.11′)

The proof of (2.11) in general case can be proved in similar way. From (3.15),

by integration in t ∈ [0, T ] we obtain a system of integrodifferential equations

us(t, y) = Cs(y) +
∫ t

T

m∑
j=1

Ks
j (τ)uj(τ, y)dτ, s = 1, . . . ,m. (3.16)

Assuming β−1
s (t)Ks

j ∈ Ĩ0, see (2.12), we obtain the estimates

||Ks
j v||p ≤ cβs(t)||v||p, s, j = 1, . . . . (3.17)

From (3.16), (3.17) we get

||us(t)||p ≤ ||Cs||p + c

∫ t

0

βs(τ)
m∑

j=1

||uj(τ)||p dτ. (3.18)

Summation over s yields

m∑
s=1

||us(t)||p ≤
m∑

s=1

||Cs||p + c

∫ t

0

β(τ)
m∑

j=1

||uj(τ)||p dτ, (3.19)

where

β(t) =
m∑

s=1

βs(t).
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Applying Gronwall inequality to (3.19), we find

m∑
s=1

||us(t)||p ≤
m∑

s=1

||Cs|| exp
(

c

∫ t

0

β(τ) dτ

)
. (3.20)

Again applying (3.16), in view of (3.20), we get

||us−Cs||p ≤ c

∫ t

0

(
βs(τ) exp

∫ τ

0

cβ(z)dz

)
dτ ≤ c

∫ t

0

(
β(τ) exp

∫ τ

0

cβ(z)dz

)
dτ,

or, by integration

||us − Cs||p ≤ c1

[
−1 + exp

(
c

∫ t

0

β(y) dy

)]
, s = 1, . . . m. (3.21)

Denoting

εj(t, y) = uj(t, y)− Cj(y), j = 1, . . . ,m, (3.22)

from (3.21) we get the relations (2.13), (2.13’). The existence of a solution of

the equation (2.1) can be proved applying the iterations to (3.16). The proof of

Theorem 2.1 is complete.

§4. PROOFS OF THEOREM 2.2 AND PROPOSITIONS

Proof of Theorem 2.2 Under the assumptions of Theorem 2.2, from Theorem

2.1 we have the representations (2.13), (2.13’) and the relations

µk(∂k
t Φ1)−1∂k

t u = µk(C1+ε1)+
m−1∑
j=2

µk(∂k
t Φ1)−1∂k

t Φj(Cj+εj), k = 0, 1, . . . ,m−1.

(4.1)

Using the condition (2.25), we get the estimates (2.27). From the equation (2.1)

we have

∂m
t u = −

m−1∑
k=0

Qm−k∂k
t u,
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and

µmΦ−1
1 ∂m

t u = −
m−1∑
k=0

µmΦ−1
1 Qm−k(∂k

t Φ1)µ−1
k µk(∂k

t Φ1)−1∂k
t u. (4.2)

In view of (2.25), (2.26), we get the estimates (2.28):

||µmΦ−1∂m
t u||s ≤

m−1∑
k=0

||µk(∂k
t Φ1)−1∂k

t u||s+δk
≤

m−1∑
k=0

m∑
j=1

||Cj ||s+rkj+δk
.

Theorem 2.2 is proved.

Proposition 2.1 is a direct corollary of Theorem 2.1. Another proof can be

found in [8].

Proof of Proposition 2.2 From (2.36) – (2.38) follows that linear integral

operators Φ1,Φ2 are solutions of the Cauchy problems

∂tΦj + ΛjΦj = 0, t ∈]0, T [, x ∈ Rn,

Φj

∣∣
t=T

= I, j = 1, 2. (4.3)

From (2.36), (2.37) we obtain

Φ2tΦ−1
2 − Φ1tΦ−1

1 = Λ1 − Λ2 = 2iQ2,

Λ2
j − Λjt = 2(Q−1Qt)2 −Q−1Qtt ± iQ−1[Qt, Q]Q,

PΦj = Φjtt + Q4Φj = (Λ2
j − Λjt + Q4)Φj = {2(Q−1Qt)2−

−Q−1Qtt± iQ−1[Q,Qt]Q}Φj = {(Q−1)tt± iQ−1[Q,Qt]}QΦj , j = 1, 2. (4.4)

These relations transform the conditions (2.16) of Remark 2.2 to

β−1
s (t)Φ−1

j Q−2{(Q−1)tt ± iQ−1[Q,Qt]QΦs ∈ Ĩ0, s = 1, 2.

They are satisfied in view of the conditions (2.41) of Proposition 2.2. From the

conditions (2.39), (2.40) of Proposition 2.2 follow the conditions (2.14), (2.15) of
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Remark 2.2 (Q1 = 0, Q2 = Q4). The operator Φ1 ∈ I0 modulo smooth operator

(see Theorem 3.3), since Φ1 satisfies the first order pseudodifferential equation

Φ1t = −Λ1Φ1, where the symbol λ1 of Λ1 satisfies the conditions (3.1), (3.2).

Similarly, Φ2,1 ∈ I0, modulo smooth operator, because Φ21 satisfies the first

order pseudodifferential equation (2.17). So the conditions of Proposition 2.2

imply all conditions of Remark 2.2. Proposition 2.2 is a consequence of Theorem

2.1 and Remark 2.2.

Proof of Proposition 2.3 Let us prove that the conditions of Propositions 2.3

imply the conditions (2.29), (2.30) of Proposition 2.1. Because Φjt = −ΛjΦj ,

the condition (2.29)1 become

µ1Φ−1
1t Φ2t = µ1Φ−1

1 Λ−1
1 Λ2Φ2 ∈ Ĩr, with r = 0.

This relation follows from the condition Λ−1
1 Λ2 ∈ Ψ0

ρ, which is the consequence

of (2.42) and of

(iQ2 + Q−1Qt)−1(−iQ2 + Q−1Qt) = (i + Q−3Q1)−1(−i + Q−3Qt) ∈ Ψ0
ρ.

The condition (2.29)2 with δ0 = 2, µ = µ2 follows from (2.39): µQ2 ∈ Ψ1
ρ

implies µ2Q4 = (µQ2)2 ∈ Ψ2
ρ, and

µ2Φ−1
1 Q2Φ1 = µ2Φ1Q

4Φ1 ∈ Ψ2
ρ ⊂ I2

ρ .

The condition (2.30) is satisfied, because of Q1 = 0. Thus the conditions of

Proposition 2.1 are satisfied with µ2 = µ2(t), r = 0, δ0 = 2, µ1 = 1. In view of

Φ1tΦ−1
1 − Φ2tΦ−1

2 = Λ2 − Λ1 = −2iQ2, ut − ΦjtΦ−1
j ut = ut + Λju, (4.5)

initial data (2.32) transform to (2.43). From the estimates (2.33) of Proposition

2.1 we get (2.44). So Proposition 2.3 follows from Proposition 2.1.
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Lemma 4.1 Let the conditions (2.39), (2.49) are satisfied. Then the solu-

tions w of the equations

∂tw + Λjw = 0, t ∈]0, T [ (4.6)

satisfy the estimates

||Q(t)w(t)||s exp
(

c

∫ t

T

µ−1(y) dy

)
≤ ||Q(T )w(T )||s ≤ ||Q(t)w(t)||s exp

(
c

∫ t

T

µ−1(y) dy

)
.

(4.7)

Proof The conditions (2.39), (2.40) imply that

µ(t)[Q2 − (Q2)∗] ∈ Ψ0
ρ.

By substitution v = Qw, τ = τ(t) =
∫ t

T
µ−1(y) dy} in (4.6), we obtain

vt ± iQ2v = 0, or vτ ± iµQ2 = 0,

and

v̄vτ + iv̄µQ2v = 0, vv̄τ ± ivQ̄2v = 0.

We get

∂τ ||v||2 + i(v, µQ2v)± i(µQ2v, v) = 0,

or

∂τ ||v||2 = ±i(vµ(Q2 −Q2∗)v).

The assumption (2.49) implies | ∂τ ||v||2 |≤ c||v||2, or, letting v → Esv = (1+ |

Dx |2)s/2v, we have

|∂τ ||v||s| ≤ c||v||s or − cdτ ≤ ||v||−1
s d||v||s ≤ cdτ.

By integration over τ ∈ [τ, 0], τ ≤ 0 we get

−c

∫ 0

τ

dτ ≤ ln
||v(0)||s
||v(τ)||s

≤ c

∫ 0

τ

dτ,
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||v(τ)||s exp(cτ) ≤ ||v(0)||s ≤ ||v(τ)||s exp(−cτ),

||v(t)||s exp{c
∫ t

T

µ−1(y)dy ≤ ||v(T )||s ≤ ||v(t)||s exp{c
∫ T

t

µ−1(y)dy.

Because v = Qw, we obtain the estimate (4.7).

Proof of Proposition 2.4 First we prove the estimates (2.48). From Lemma

4.1 we obtain

||Φ−1
1 u(t)||s = ||u(T )||s = ||Q−1(T )Q(T )u(T )||s ≥ ||Q(T )u(T )||s−1/2 ≥

≥ ||Q(T )u(t)||s−1/2 exp{c
∫ t

T

µ−1(y) dy} ≥ p1/4(t) exp{c
∫ t

T

µ−1(y)} dy}||u(t)||s,

therefore, in view of (2.44) we get (2.48) for k = 0:

p1/4(t){exp{c
∫ t

T

µ−1(y)} dy}}||u(t)||s ≤ ||Φ−1
1 u(t)||s ≤ c

2∑
j=1

||Cj ||s.

Furthermore

µp1/4(t){exp{c
∫ t

T

µ−1(y) dy}}||u(t)||s ≤ µ||Φ−1
1 ut(t)||s ≤ c

2∑
j=1

||Cj ||s.

Because µ = p−1/2, we obtain (2.48) for k = 1. The proof of (2.48) is completed

by the observation

µ2p1/4(t){exp{c
∫ t

T

µ−1(y)} dy}}||utt||s ≤ µ2||Φ−1
1 utt(t)||s ≤ c

2∑
j=1

||Cj ||s.

To prove Proposition 2.4 we show, that the conditions of Proposition 2.3 fol-

low from the assumptions of Proposition 2.4. Putting j = 0 in (2.47) we get

p−1/4Q ∈ Ψ1/2; this implies µQ2 = (p−1/4(t)Q)2 ∈ Ψ1, that is, (2.39)1 with

µ = p−1/2(t). Putting j = 1 in (2.47), we get from (2.46) p1/4Q−1 ∈ Ψ−1/2,

p−1
t p3/4Qt ∈ Ψ1/2; this implies

p−1/2Q−1Qt = p−3/2pt(p1/4Q−1)(p−1
t p3/4Qt) ∈ Ψ0

23



(in view of the inequality (2.45) | p−3/2pt |< ε), that is (2.39). From (2.46),

(2.47) with ρ = p−5/2p2
t ∈ L1([0, T ]), (see (2.45)), we obtain the condition (2.41)

as follows

ρ1Q
−3[Qt, Q]Q = (p1/4Q−1)3p−2

t p2[Qt, Q](p−1/4Q) ∈ Ψ0,

ρ2(t)Q−2(Q−1)ttQ = ρ−1
2 (t)Q−2[2(Q−1Qt)2 −Q−1Qtt] =

= (p1/4Q−1)2[2(p1/4Q−1p3/4p−1
t Qt)− (p1/4Q−1)p7/4p−2

t Qtt] ∈ Ψ0,

since

(Q−1)ttQ = 2(Q−1Qt)−Q−1Qtt.

In view of (2.45), the condition (2.42) follows from the inclusion

Q−3Qt = (p1/4Q−1)3(p3/4p−1
t Qt)ptp

−3/2 ∈ Ψ−1.

Proposition 2.4 is proved.

To prove the Remark 2.6, we note, that in view of (2.48), (2.39), we can put

in (4.7) µ = 1. Therefore the weight function exp{c
∫ t

T
µ−1(y)} dy tends to a

constant, as t tends to 0 and (2.50) follows from the estimates (4.7) of Lemma

4.1.
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