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Abstract

We prove new asymptotical stability and instability theorems for non autonomous
2×2 system of first-order differential equations by using a new version of the classical
Levinson asymptotic theorem for 2×2 systems. The proof of this version is based on
the construction of approximate fundamental solution of the original system in the spe-
cial form with unknown phase function and the error estimates formulated in the terms
of generalized characteristic functional. In the case of constant matrix A generalized
characteristic functional turns to the usual characteristic polynomial and by choosing
phase functions as eigenvalues of the matrix A the error could be eliminated. As an-
other application we derive a transition probability formula for the two level atom in
the external electromagnetic field described by Schrodinger system.
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1. Main Results

Consider the system of linear ordinary differential equations

u′(t) = A(t)u(t), t > T, (1.1)

whereu(t) is a 2-vector function, and

A(t) =
(

a11(t) a12(t)
a21(t) a22(t)

)
is a 2×2 matrix-function differentiable byt ∈ (T,∞).

The rest stateu(t) = 0 of (1.1) is called stable if for anyε > 0 there existsδ(T,ε) > 0
such that if|u(T)| < δ(T,ε) then|u(t)| < ε for all t ≥ T. The rest stateu(t) = 0 of (1.1) is
called asymptotically stable if it is stable, and attractive:

lim
t→∞

u(t) = 0 (1.2)
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for every solution of (1.1).
The usual method of investigation of asymptotic stability of differential equations is the

Lyapunov’s method that uses energy functions and Lyapunov stability theorems [2, 3, 5, 13,
6, 8, 12, 14, 16, 17].

Here we continue the development of another approach started in [9, 10, 11]. This ap-
proach based on the usage of different asymptotic solutions [15] investigated in [7] (instead
of construction of energy functions in Lyapunov’s method), and the error estimates [4]. To
prove stability inequalities for system (1.1) we use a new version of the Levinson theorem
(see Theorem 2.1 below) for 2×2 systems about asymptotic solutions with explicit esti-
mate of the error term, which may be used also for finding actual asymptotic solutions (see
Remark 2.2). The classical Levinson theorem uses a decomposition of the right side matrix
functionA = B+ R, where the leading matrixB is diagonal and the perturbation matrixR
is integrable. In our version we prove the error estimate using the decomposition with the
leading matrixB such that corresponding system is explicitly solvable. To prove the error
estimates we use a construction of approximate fundamental matrix of system (1.1) in the
special form with an unknown phase functionϕ(t), which may be chosen by using known
asymptotic solutions. In the paper we illustrate on examples some choices of the function
ϕ(t). For instance one of the choices ofϕ(t) is based on the Green-Liouville asymptotic
solutions (see (1.30))

Examples show that asymptotic solutions approach works better than Lyapunov’s method
for the systems with complex valued coefficients (see Example 1.3).

There is a bridge connecting asymptotic solutions approach with Lyapunov’s method:
when the asymptotic fundamental matrix solutionΨ of (1.1) is chosen the appropriate en-
ergy function of Lyapunov may be constructed by the formula

E(t,u(t)) = ‖Ψ−1(t)u(t)‖2.

IndeedE(t) ≥ 0, and if Ψ is the exact fundamental matrix function of (1.1) then con-
servation lawE′(t) = 0 is true.

Furthermore we deduce the transition probability formula for the Schrodinger system
that describes the interaction of two-level atom with electromagnetic field, and we give the
comparison of two approximate solutions.

Denote byL1(T,∞) the class of Lebesgue integrable in(T,∞) functions and byC1(T,∞)
the class of differentiable functions on(T,∞).

Denote
TrA(t) = a11(t)+a22(t), |A(t)|= det(A(t)).

Asymptotic behavior of solutions of autonomous systems is described by eigenvalues of
corresponding matrixA. The key step of finding behavior of solutions of non autonomous
system (1.1) is to find the phase functionsθ j that are minimizing (or eliminating) the gen-
eralized characteristic functional

Char(θ) =−θ2−θ′+θ
(

Tr(A)+
a′12

a12

)
−|A|−W[a11,a12]

a12
, (1.3)

whereW[·, ·] is a Wronskian:

W[a,b] = a(t)b′(t)−a′(t)b(t).
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Here and further in the text we often suppressed dependence ont for simplicity.
Note that in the case of constant matrix A in (1.1) the characteristic functional (1.3)

turns to the usual characteristic polynomial:

Char(θ) =−θ2 +θTrA−|A|,

so we can eliminate the characteristic functional by choosing phase functions as eigenvalues
of the matrix A.

Using Liouville’s formula that gives the connection between the functionsθ j we can
start from a single unknown phase functionξ(t) ∈C2[T,∞), and the matrix function A(t) to
construct the phase functionsθ j :

θ1,2(t) =±ξ(t)+
Tr(A(t))

2
+

a′12(t)
2a12(t)

− ξ′(t)
2ξ(t)

. (1.4)

Introducing the shifted phase functionϕ(t) = TrA/2−θ1 we define the functional

H(ϕ(t)) = Char(TrA/2−ϕ) =
(

Tr(A)
2

)2

−|A|+a12

(
2ϕ+a11−a22

2a12

)′
−ϕ2. (1.5)

Note that the functionϕ(t) is connected with the functionξ(t) = (θ1−θ2)/2 via trans-
formation

ξ(t) =
a12(t)e

∫ t
T 2ϕ(z)dz

2(C−
∫ t

T a12(s)e
∫ s

T 2ϕ(z)dzds)
, C = const. (1.6)

Theorem 1.1. Assume A∈C1(T,∞),a12∈C2(T,∞), a12(t) 6= 0 on (T,∞), and there exists
a functionϕ ∈C1(T,∞), such that

∫ ∞

T

∣∣∣∣H(ϕ(s))
ξ(s)

∣∣∣∣e±2
∫ s

T ℜ[ξ(y)]dyds< ∞. (1.7)

Then the rest state of (1.1) is asymptotically stable if and only if∫ ∞

T
ℜ[θ j(s)ds=−∞, j = 1,2, (1.8)

lim
t→∞

∣∣∣∣θ j(t,u)−a11(t,u)
a12(t,u)

∣∣∣∣(t)e∫ t
T ℜ[θ j (y,u)]dy = 0, j = 1,2. (1.9)

Remark 1.1. The best choice of the functionϕ in Theorem 1.1 is such that H(ϕ(t)) ≡ 0,
which means that the error of approximation is equal to zero and condition (1.7) disappears.
It is well known that Riccati equation H(ϕ(t)) = 0 can not be solved analytically in general
case, so we don’t expect to find the bestϕ in general, but in many cases using theory of
asymptotic solutions [7] one can find functionϕ, such that the functionH(ϕ)

ξ is so small that
condition (1.7) is satisfied.
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Remark 1.2. The main functionϕ could be constructed also by using specific asymptotic
fundamental matrix solutionΨ of (1.1). Indeed (see formula (2.11)) from the givenΨ =[

Ψ11 Ψ12

Ψ21 Ψ22

]
the phase functionξ may be found from the formula

ξ(t) =
d
dt

ln

(
Ψ12(t)
Ψ11(t)

)
.

and the functionϕ from (1.6). For example, using Liouville-Green (or WKB) asymptotic
solutions we deduce Corollary 1.6 below about asymptotic stability from Theorem 1.1.

In the casea12 ≡ 0 Theorem 1.1 is not applicable, but system (1.1) can be solved ex-
plicitly, so the following theorem is trivial.

Theorem 1.2. Assume a12(t)≡ 0, A∈ L1(T,∞). Then the rest state of (1.1) is asymptot-
ically stable if and only if

lim
t→∞

∫ t

T
a j j (s)ds=−∞, j = 1,2, (1.10)

lim
t→∞

(
e

∫ t
T a11(y)dy

∫ t

T
a21(s)e

∫ s
t (a11−a22)(y)dyds

)
= 0, j = 1,2. (1.11)

Example 1.1. Consider the system of linear equations

u′1(t) = f (t)u2(t), u′2(t) =−g(t)u2(t),

u1(t0) = u10, u2(t0) = u20,

with
f (t) = t−2a, g(t) = bt2a−2γ, 1 < γ < 2a, b 6= 0.

For this example asymptotic stability follows from Theorem 1.1.

In the cases when one of the quantities±ℜ[ξ(t)] is unbounded condition (1.7) is very
restrictive. In the next Theorem 1.3 under additional conditions (1.13), (1.14) below we
prove the asymptotic stability of the rest state under condition (1.12) less restrictive than
(1.7).

Theorem 1.3. Assume a12(t) is not equal to zero for t> T, and there exists a function
ϕ ∈C1(T,∞), such that (1.8) and∫ ∞

T

∣∣∣∣H(ϕ(s))
ξ(s)

∣∣∣∣ds< ∞. (1.12)

ℜ[θ j(t)]≤ 0, j = 1,2, (1.13)∣∣∣∣θ j(t)−a11(t)
a12(t)

∣∣∣∣≤C, j = 1,2, (1.14)

are satisfied for all t≥ T.
Then the rest state of (1.1) is asymptotically stable.
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Remark 1.3. If for some positive number p we have

ℜ[ξ(t)]≤ 0, ℜ[θ2(t)]≤−p < 0, t > T, (1.15)

then condition (1.8), (1.13) of theorem 1.3 may be removed, because they follow from con-
dition (1.15).

Introduce the functions

ξ(t) =− a12(t)
2

∫ t
T a12(s)e

∫ s
t (2Sn+1+a22−a11)dyds

, (1.16)

S0 ≡ 0, Sn+1(t) = a12(t)
∫ t

T

(S2
n−a12a21)(s)

a12(s)
e

∫ s
t (a11−a22)dyds, n = 0,1, .... (1.17)

Corollary 1.4. Assume that the matrix-function A(t) is real valued, and for some T1 > T

a12(t) > 0, t ≥ T1, (1.18)∫ ∞

T1

∣∣∣∣∣S2
n+1(t)−S2

n(t)
ξ(t)

∣∣∣∣∣dt < ∞, for some n, (1.19)

∫ ∞

T1

(2ξ+Sn+1−a11)(t)dt = ∞, (1.20)

2ξ(t)+Sn+1(t)−a11(t)≥ 0 t > T1, (1.21)∣∣∣∣Sn+1

a12

∣∣∣∣(t)≤ const, t ≥ T1. (1.22)

Then (1.1) is asymptotically stable.

Example 1.2. Consider the linear system (1.1) with

A(t) =
(

0 1
−g(t)−2 f ′(t) −2 f (t)

)
.

Denote

S1(t) =
∫ t

T
(g(s)+2 f ′(s))e

∫ s
t 2 f (y)dyds.

If f ∈C1(T,∞) and for some numbers g0, f0

0 < f0 ≤ f (t), 0≤ g(t)+2 f ′(t)≤ g0 < 2 f 2
0 , t ≥ T (1.23)∫ ∞

T1

S1(t)dt = ∞, (1.24)

S1(t)+2ξ(t)≥ 0,
∫ ∞

T1

∣∣∣∣S2
1(s)

ξ(s)

∣∣∣∣ds< ∞, (1.25)

then the problem (1.1) is asymptotically stable because all conditions of Corollary 1.4 are
satisfied.

Note that it is well known [19] that in the large damping case (1.23) Wintner-Smith
condition (1.24) is necessary and sufficient condition of asymptotic stability. So it is possible
to get rid of extra conditions (1.25), but we don’t know if it could be done in this approach.
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Corollary 1.5. Assume that the matrix-function A(t) is real valued, a12(t) > 0 on (T,∞),
for all t ∈ (T,∞), and ∫ ∞

T

∫ t

T

∣∣∣a21(s)e
∫ s

t (a22(y)−a11(y))dy
∣∣∣dsdt< ∞, (1.26)

∫ ∞

T

(
a11(s)+

a12(s)∫ t
T a12(s)e

∫ s
t (a22−a11)(y)dyds

)
dt =−∞, (1.27)

a11(t)+
a12(t)∫ t

T a12(s)e
∫ s

t (a22(y)−a11(y)dyds
≤ 0. (1.28)

Then (1.1) is asymptotically stable.

Corollary 1.6. Assume a12(t) 6= 0 on(T,∞), A∈C2(T,∞), a22−a11,a12∈C3(T,∞), and∫ ∞

T
|k′(t)+k2(t)ξ(t)|e±2

∫ t
T ℜ[ξ(s)]dsdt < ∞, (1.29)

where

ξ(t) =

√(
TrA

2

)2

−|A|+a12

(
a11−a22

2a12

)′
, k(t) =

a12

2ξ2

(
ξ

a12

)′
. (1.30)

Then (1.1) is asymptotically stable if and only if (1.8),(1.9) are satisfied.

Corollary 1.7. Assume a22− a11,a12 ∈ C3(T,∞),A ∈ C2(T,∞), a12(t) 6= 0 on (T,∞),
(1.8),(1.13), (1.14) and ∫ ∞

T
|k′(t)+k2(t)ξ(t)|dt < ∞ (1.31)

are satisfied. Here functionsξ,θ j ,k are defined in (1.30), (1.4).
Then (1.1) is asymptotically stable.

Note that condition (1.31) is close to the main assumption of asymptotic stability theo-
rems in Pucci and Serrin [16, 17], thatk(t) is the function of bounded variation(

∫ ∞
T |k′(t)|dt)<

∞.

Example 1.3. Consider system (1.1) with

A(t) =
(

0 1
−1 −2 f (t)

)
, (1.32)

where
f (t) = tα + it β. (1.33)

For the small damping case:

−1 < α < 0, β < 0, α+β <−1 (1.34)

conditions of Corollary 1.6 are satisfied and this system is asymptotically stable.
From Corollary 1.7 it follows that this system is asymptotically stable in the more gen-

eral case:

−1 < α < 1, β≤ α+1
2

. (1.35)
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Here we consider another application of our approach in optical physics. We deduce
the transition probability formula for dynamic system described by a general system (1.1)
with antihermitian matrix functionA(t) and initial conditions:

u1(0) = 1, u2(0) = 0. (1.36)

The associated probability for an atom initially in state a to make a transition after
excitation for a timet to state b is

P(t) = |u1(t)|2

Note that if the matrix A in equation (1.1) is antihermitian:A∗ =−A, then the normal-
ization of the wave function is constant at all times:

|u1(t)|2 + |u2(t)|2 = 1.

Introducing the auxiliary functions

g(t) = g(0)−2
∫ t

0
a12(t)e

∫ t
0 2ϕ(y)dy, (1.37)

α(t) =
1
2

ℜ ln

(
g(0)(a11(0)−θ2(0))
g(t)(θ1(0)−a11(0))

)
, β(t) =

1
2

ℑ ln

(
g(0)(a11(0)−θ2(0))
g(t)(θ1(0)−a11(0))

)
,

(1.38)

B(t) =
|g(t)g(0)(a11(0)−θ2(0))(a11(0)−θ1(0))|

|a12(0)|2e−2
∫ t

0 ℜ(θ1)dy
(1.39)

we have general transition probability formulas

|u1(t)|2 = B(t)
(
sinh2α(t)+cos2β(t)

)
, |u2(t)|2 = 1−|u1(t)|2. (1.40)

Note that in view of (1.4),(1.6), (1.37)-(1.40) to calculate transition probability we need
to know only the functionϕ(t).

Formula (1.40) allows quickly calculate transition probability for any approximation
given via a functionϕ. Anyway the best choice ofϕ is such that minimizesH(ϕ)/ξ.

Example 1.4. Consider the dynamic system (1.1) which describes an interaction of two-
level atom in the external monochromatic electromagnetic field with frequencyω:

u′(t) =
(

0 iWeitE cos(tω)
iWe−itE cos(tω) 0

)
u(t). (1.41)

where E is the difference of energy levels of the atom.
From (1.5) we have

H(ϕ) =−ϕ2−W2cos2(tω)+eitE cos(tω)
(

ϕe−itE

cos(tω)

)′
= ϕ′+ϕ(−iE +ω tan(tω))−W2cos2(tω)−ϕ2. (1.42)
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The function

ϕ = a12 = iWeitE cos(tω) (1.43)

gives a good approximation from a mathematical point of view. From (1.40) we get

|u1(τ)|2 = sin2
(

W
∫ t

0
cos(sω)cos(sE)ds

)
+sinh2

(
W

∫ t

0
cos(sω)sin(sE)ds

)
. (1.44)

Note that using expression (1.42) we get

H(ϕ(t))
ξ(t)

=
W2cos2(tω)(e2itE −1)

−iWeitE cos(tω)
=−2Wsin(tE)cos(tω),

or ∫ t

0

|H(ϕ(s))|ds
|ξ(s)|

≤ 2W
∫ t

0
|sin(sE)cos(sω)|ds≤ tW, (1.45)

which is small for small tW.

Using rotating wave approximation from optical physics (see[1, 18]) we get another
functionϕ :

ϕ0 =
i
2

(ω−E +∆) , ∆ =
√

(ω−E)2 +W2. (1.46)

From (1.40)

|u1(τ)|2 = Bsin2
(

t∆+ tω−η(t)
2

)
+Bsinh2

(
1
2

ln
R

(∆+ω)(m−1)

)
. (1.47)

where

η(t) = tan−1
(

ω tan(tω)
∆+ω

)
, R=

√
(∆+ω)2cos2(tω)+ω2sin2(tω).

B =
(∆+ω−E)2(m−1)(∆+ω)

√
(∆+ω)2 +ω2

∆2(∆+2ω)2 , m=
2∆(∆+2ω)

(∆+ω)(∆+ω−E)
. (1.48)

If ω = 0, then from (1.47) we get

|u1(τ)|2 =
W2

E2 +W2

[
sin2

(
t∆
2

)
+sinh2

(
1
2

ln
∆−E
∆+E

)]
.

If E = ω = 0, then

|u1(τ)|2 = sin2(tW/2),

which is often referred as the Rabi formula [1]. Note that one can estimate the error
function for each approximation by using Theorem 2.1 below.
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2. Levinson Theorem for2×2 System and Proofs of Main Re-
sults

Suppose we can find the exact solutions of the system

ψ′(t) = B(t)ψ(t), t > T, (2.1)

with the matrix-function

B(t) =
(

b11(t) b12(t)
b21(t) b22(t)

)
close to the matrix-function A, which means that the condition (2.7) below is satisfied.
Let Ψ(t) is the 2×2 fundamental matrix function of the auxiliary system (2.1). Then the
solutions of (2.1) can be represented in the form

u(t) = Ψ(t)(C+ ε(t)), (2.2)

whereu(t),ε(t),C are the 2-vector columns:u(t)= colomn(u1(t),u2(t)), ε(t)= colomn(ε1(t),ε2(t)),
C = colomn(C1,C2),Ck are arbitrary constants. We can consider representation (2.2) as a
definition of the error vector-functionε(t).

Following theorem is a version of the Levinson Theorem [15, 7] about asymptotic so-
lutions for 2×2 systems:

Theorem 2.1. Assume there exist a functionξ ∈C1[T,∞) such that

L(t)≡ max
j=1,2

∣∣∣∣Char(θ j(t))
2ξ(t)

e(−1) j−1 ∫ t
T 2ℜ[ξ(y)]dy

∣∣∣∣ ∈ L1(T,∞). (2.3)

Then every solution of (1.1) can be represented in form (2.2) and the error vector-function
ε(t) can be estimated as

‖ε(t)‖ ≤ ‖C‖
(
−1+exp

∫ ∞

t
|L(s)|ds

)
, (2.4)

where C is the constant vector and‖ · ‖ is the Euclidean vector (or matrix) norm:‖ε(t)‖=√
ε2

1(t)+ ε2
2(t).

Remark 2.1. From (2.3),(2.4) it follows thatε(t) = o(1), t → ∞. Also if Char(θ1) =
Char(θ2)≡ 0, thenε(t)≡ 0.

Remark 2.2. Trying to find asymptotic solutions that are minimizing the error or corre-
sponding function H given by formula (1.5), one can choose the functionϕ for example by
the formula (see also (1.30))

ϕ2(t) =
(

TrA
2

)2

−|A|+a12

(
a11−a22

2a12

)′
.

Then asymptotic solutions obtained by this choice via formulas (1.4) will coincide with
the well known Liouville-Green functions. Another choice ofϕ is given in (2.30) below.
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Proof of Theorem 2.1.The substitutionu(t) = Ψ(t)v(t) transforms (1.1) into

v′(t) = M(t)v(t), M(t) = Ψ−1(AΨ−Ψ′)(t).

By integration we get

v(t) = C−
∫ b

t
M(s)v(s)ds, T < t < b, (2.5)

where the constant vectorC is chosen as in (2.2).
Estimatingv(t)

‖v(t)‖ ≤ ‖C‖+
∫ b

t
‖M(s)‖‖v(s)‖ds,

and using Gronwall’s inequality we have

‖v(t)‖ ≤ ‖C‖e
∫ b

t ‖M(s)‖ds.

From representation (2.2) we have

ε(t) = Ψ−1u−C = v−C =−
∫ b

t
M(s)v(s)ds,

and using previous estimate we get

‖ε(t)‖ ≤
∫ b

t
‖Mv‖ds

≤ ‖C‖
∫ b

t
‖M(s)‖exp

(∫ b

s
‖M‖dy

)
ds

= ‖C‖
(
−1+exp

(∫ b

t
‖M‖ds

))
,

or
‖ε(t)‖ ≤ ‖C‖

(
−1+exp

(∫ ∞

t
‖Ψ−1(AΨ−Ψ′)(s)‖ds

))
. (2.6)

Note that error functionε(t) is bounded if∫ ∞

t
‖Ψ−1(AΨ−Ψ′)(s)‖ds< ∞. (2.7)

To finish the proof we should calculate matrix functionM in terms of characteristic
functionsChar(θ j) using the construction of approximate fundamental matrix solution of
(1.1).

To construct the approximate fundamental matrix functionΨ let us seek approximate
solutions of (1.1)

u′1 = a11u1 +a12u2, u′2 = a21u1 +a22u2,

as a linear combination of exponential functions

u1 = C1e
∫ t

T θ1(y)dy+C2e
∫ t

T θ2(y)dy. (2.8)
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Substituting this representation foru1 in the first equation

a12u2 = u′1−a11u1 = (θ1−a11)C1e
∫ t

1 θ1(y)dy+C2(θ2−a11)e
∫ t

T θ2(y)dy,

and solving foru2 we have

u2(t) = U1(t)C1e
∫ t

T θ1(y)dy+U2(t)C2e
∫ t

T θ2(y)dy,

U1(t) =
θ1−a11

a12
, U2(t) =

θ2−a11

a12
, U1(t)−U2(t) =

2ξ(t)
a12(t)

, (2.9)

or
u(t) = Ψ(t)C, (2.10)

where the fundamental matrixΨ(t) is defined by the formula

Ψ(t) =
(

1 1
U1(t) U2(t)

)(
e

∫ t
T θ1(y)dy 0

0 e
∫ t

T θ2(y)dy

)
. (2.11)

Define

ξ(t) =
θ1(t)−θ2(t)

2
, Charj(t) = Char(θ j(t)). (2.12)

If A∈C1(T,∞), a12∈C2(T,∞), a12(t) is not equal to zero on(T,∞), then following
formulas are true

|Ψ(t)|= det[Ψ(t)] =− 2ξ(t)
a12(t)

e
∫ t

T(θ1+θ2)dy, (2.13)

Char2(t)−Char1(t)
2ξ

= θ1 +θ2−Tr(A)+
ξ′

ξ
− a′12

a12
(2.14)

ΨMΨ−1 = A−Ψ′Ψ−1 =
1
2ξ

(
0 0

U1Char2−U2Char1 Char1−Char2

)
, (2.15)

M(t) = Ψ−1AΨ−Ψ−1Ψ′(t) =
1

2ξ(t)

(
Char1(t) e−2

∫ t
T ξdyChar2(t)

−e2
∫ t

T ξdyChar1(t) −Char2(t)

)
. (2.16)

From Liouville’s formula

|Ψ|′

|Ψ|
= Tr(A) = a11+a22 (2.17)

in view of (2.11) we have

(θ1−θ2)′

θ1−θ2
− a′12

a12
+θ1 +θ2−a11−a22 = 0

or another version of Liouville’s formula

θ1 +θ2 = Tr(A)− ξ′

ξ
+

a′12

a12
. (2.18)

It easy to check that the functionsθ j from (1.4) satisfy (2.18).
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Remark 2.3. From (1.3) and (2.18) it follows that

Char1(t) = Char2(t)≡ H(t), (2.19)

and formula (2.16) turns to

M(t) = Ψ−1AΨ−Ψ−1Ψ′ =
H(t)
2ξ(t)

(
−1 −e−2

∫ t
T ξ(y,u(y))dy

e2
∫ t

T ξ(y,u(y)dy 1

)
. (2.20)

Formulas (2.13)-(2.16) can be checked by direct calculations. Indeed,

Char2(t)−Char1(t) = (θ1−θ2)
(

θ1 +θ2−Tr(A)+
W[a12,θ1−θ2]

a12(θ1−θ2)

)
.

From (2.11)

Ψ−1(t) =
1

U2−U1

(
e−

∫ t
T θ1dy 0
0 e−

∫ t
T θ2dy

)(
U2 −1
−U1 1

)

Ψ′(t) =
(

θ1 θ2

Λ1U1 Λ2U2

)(
e

∫ t
T θ1dy 0
0 e

∫ t
T θ2dy

)
where

Λ j = θ j +
(θ j −a11)′

θ j −a11
− a′12

a12
= θ j +

W[a12,θ j −a11]
a12(θ j −a11)

, j = 1,2.

So

Ψ′Ψ−1 =

(
a11 a12

a21+ Char1U2−Char2U1
2ξ a22+ Char2−Char1

2ξ

)
Indeed,

Ψ′Ψ−1 =
1

U2−U1

(
θ1 θ2

Λ1U1 Λ2U2

)(
U2 −1
−U1 1

)
=

1
U2−U1

(
θ1U2−θ2U1 θ2−θ1

(Λ1−Λ2)U1U2 Λ2U2−Λ1U1

)
=

(
a11 a12

a21+ Char2U1−Char1U2
2ξ a22+ Char2−Char1

2ξ

)
,

in view of

θ1U2−θ2U1

U2−U1
= θ1 +

(θ1−θ2)U1

U2−U1
= θ1 +a11−θ1 = a11,

and
Λ2U2−Λ1U1

U2−U1
=

(Λ2−Λ1)U1

U2−U1
+Λ2 =

(a11−θ1)(Λ2−Λ1)
2ξ

+Λ2

=
a11−θ1

2ξ

[
−2ξ+

(θ2−a11)′

θ2−a11
− (θ1−a11)′

θ1−a11

]
+θ2 +

(θ2−a11)′

θ2−a11
− a′12

a12
=
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θ1−a11+
(θ2−a11)′

θ2−a11

(
a11−θ1

2ξ
+1

)
+

(θ1−a11)′

2ξ
+θ2−

a′12

a12
=

= θ1 +θ2−a11+
ξ′

ξ
− a′12

a12
= a22+

Char2−Char1
2ξ

,

and
U1U2(Λ1−Λ2)

U2−U1
=

(θ1−a11)(θ2−a11)
−2ξa12

[
2ξ+

(θ1−a11)′

θ1−a11
− (θ2−a11)′

θ2−a11

]
=−(θ1−a11)(θ2−a11)

a12
+

(θ2−a11)′(θ1−a11)− (θ1−a11)′(θ2−a11)
2a12ξ

=

= a21+
Char1U2−Char2U1

2ξ
= a21−

Char1
a12

+
(Char1−Char2)(θ1−a11)

2a12ξ
,

where we use the calculations

Char2U1−Char1U2

2ξ
=

θ2−a11

2a12ξ

[
|A|+θ2

1−θ1(a11+a22)+(θ1−a11)′−
a′12(θ1−a11)

a12

]
+

−θ1−a11

2a12ξ

[
|A|+θ2

2−θ2(a11+a22)+(θ2−a11)′−
a′12(θ2−a11)

a12

]
=

=
|A|
−a12

+
θ1θ2−a11(θ1 +θ2)

a12
+

a11+a22

2a12ξ
[θ2(θ1−a11)−θ1(θ2−a11)]+

+
(θ2−a11)(θ1−a11)′− (θ1−a11)(θ2−a11)′

2a12ξ
=

a21+
(θ1−a11)(θ2−a11)

a12
+

W[θ2−a11,θ1−a11]
2a12ξ

.

The final estimate (2.4) follows from (2.6) and (2.16).

Proof of Theorem 1.1.From condition (1.7) of Theorem 1.1 and formula (2.20) it follows
that

‖M(t)‖ ∈ L1(T,∞),

and condition (2.3) of Theorem 2.1 is satisfied. Applying Theorem 2.1 we obtain represen-
tation (2.2) for solutions of (1.1). From (2.2) and (2.4) we get stability inequality

‖u(t)‖ ≤ c· ‖Ψ(t)C‖. (2.21)

Because of this estimate all solutions of (1.1) are stable and attractive if and only if

lim
t→∞

(‖Ψ(t)‖) = 0.

This condition is satisfied because of conditions (1.8),(1.9) of Theorem 1.1 and formula
(2.11).
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Proof of Example 1.1.We have

A =
(

0 f (t)
−g(t) 0

)
,

and

a12 = f (t), Tr(A) = 0, |A|= f (t)g(t), H(t) =− f g−F2 + f (t)
(

F(t)
f (t)

)′
.

Choosing

ξ =
ib
tγ

we get

k = O(tγ−1),
H(t)

ξ
=− f g

ξ
−ξ(1−k2)+k′ = O(tγ−2) ∈ L1(T,∞), if γ > 1,

and condition (1.7) is satisfied. From

θ1,2 = ξ+
a′12

2a12
− ξ′

2ξ
=± ib

tγ +
γ−2a

2t

ℜ[θ j ] =
γ−2a

2t
< 0, if γ < 2a,

it follows that condition (1.8) is satisfied.
If γ > 1 then condition (1.9) is satisfied as well:

θ j −a11

a12
e

∫ t
1 ℜ[θ j ]dy = t2a

(
ib
tγ +

γ−2a
2t

)
exp

(∫ t (γ−2a)dy
y

)
= O(tγ−1)→ 0,

whent → ∞

Denote byG(t,s) = Ψ(t)Ψ−1(s) the Cauchy matrix function of (1.1).

Lemma 2.2. Assume that conditions (1.13), (1.14) are satisfied. Then

|G(t,s)|= |Ψ(t)Ψ−1(s)| ≤C

∣∣∣∣a12(s)
ξ(s)

∣∣∣∣ , T ≤ s≤ t, (2.22)

‖Ψ(t)M(t)Ψ−1(t)‖ ≤C

∣∣∣∣H(t)
a12

∣∣∣∣ , t ≥ T. (2.23)

Proof of Lemma 2.2.From condition (1.14) it follows that

|U j(t)| ≤C, j = 1,2, for all t ≥ T.

By direct calculations

G(t,s) =
1

U2(s)−U1(s)

(
e

∫ t
s θ1dy e

∫ t
s θ2dy

U1(t)e
∫ t

s θ1dy U2(t)e
∫ t

s θ2dy

)(
U2(s) −1
−U1(s) 1

)
So estimate (2.22) follows from

|Gk j(t,s)| ≤
C

|U2(s)−U1(s)|
= C

∣∣∣∣a12(s)
2ξ(s)

∣∣∣∣ , k, j = 1,2.

The estimate (2.23) follows from the formula (2.15).
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Proof of Theorem 1.2.Proof follows directly from the explicit formula for fundamental ma-
trix function in the casea12≡ 0 :

Ψ(t) =

(
e

∫ t
T a11(y)dy, 0

e
∫ t

T a22(y)dy[C+
∫ t

T a21(s)e
∫ s

T(a11−a22)(y)dyds], e
∫ t

T a22(y)dy

)
.

Proof of Theorem 1.3.Consider the system (1.1). By substitution

u(t) = Ψ(t)v(t),

we get

v′(t) = M(t)v(t), v(t) = C+
∫ t

T
M(s)v(s)ds,

or

Ψ−1(t)u(t) = C+
∫ t

T
M(s)Ψ−1(s)u(s)ds, T ≤ s≤ t, (2.24)

u(t) = Ψ(t)C+
∫ t

T
G(t,s)Ψ(s)M(s)Ψ−1(s)u(s)ds. (2.25)

From this representation and Lemma 2.2 we obtain the estimates

‖u(t)‖ ≤ ‖Ψ(t)C‖+
∫ t

T
‖G(t,s)‖ · ‖Ψ(s)M(s)Ψ−1(s)u(s)‖ds

≤ ‖Ψ(t)C‖+
∫ t

T

∣∣∣∣H(s)
ξ(s)

∣∣∣∣‖u(s)‖ds.

Applying Gronwall’s inequality (see for example [10]) we get

‖u(t)‖ ≤ ‖Ψ(t)C‖+
∫ t

T
‖Ψ(s)C‖

∣∣∣∣H(s)
ξ(s)

∣∣∣∣exp

(∫ s

T

∣∣∣∣H(y)
ξ(y)

∣∣∣∣dy

)
ds,

‖u(t)‖ ≤ ‖Ψ(t)C‖∞

(
1+

∫ t

T

∣∣∣∣H(s)
ξ(s)

∣∣∣∣exp

(∫ s

T

∣∣∣∣H(y)
ξ(y)

∣∣∣∣dy

)
ds

)
,

where‖u(t)‖∞ = supt≥T‖u(t)‖.
So we obtain the stability estimate

‖u(t)‖ ≤ ‖Ψ(t)C‖∞ exp

(∫ t

T

∣∣∣∣H(s)
ξ(s)

∣∣∣∣ds

)
. (2.26)

Using this inequality we can estimate (2.25) again

‖u(t)−Ψ(t)C‖ ≤ ‖Ψ(t)C‖∞

(
exp

∫ t

T

∣∣∣∣H(s)
ξ(s)

∣∣∣∣ds−1

)
. (2.27)

From conditions (1.13),(1.14) of Theorem 1.3 and formula (2.11) we have

‖Ψ(t)C‖ ≤ const.
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So from stability inequality (2.26) and condition (1.12) of Theorem 1.3 we get stability
of (1.1).

From (1.8),(1.9) we have

lim
t→∞

‖Ψ(t,u)C‖= 0,

and asymptotic stability of (1.1) follows from the estimate (2.26).

Proof of Corollary 1.4.We deduce Corollary 1.4 from Theorem 1.3 by choosingξ as in
(1.16), and

ϕ = Sn+1 +
a22−a11

2
. (2.28)

From the conditiona12 > 0 it follows that for allt ≥ T1 > T∫ t

T
a12e

∫ s
t (2Sn+1+a22−a11)dy≥

∫ T1

T
a12e

∫ s
t (2Sn+1+a22−a11)dy = γ1(T1) > 0,

and from (1.16)
− a12

2γ1(T1)
≤ ξ < 0, t ≥ T1 > T. (2.29)

By direct calculations we get from (1.5),(2.28)

H(t) =
(

a11−a22

2

)2

+a12a21+a12

(
2ϕ+a11−a22

2a12

)′
−ϕ2 =

(
a11−a22

2

)2

+a12a21+a12

(
Sn+1

a12

)′
− (Sn+1 +

a22−a11

2
)2 =

a12a21+a12

(
Sn+1

a12

)′
+(a11−a22)Sn+1−S2

n+1 = S2
n−S2

n+1,

if Sn+1 are the solutions of first order equations:

S0 ≡ 0,

(
Sn+1

a12

)′
+(a11−a22)

Sn+1

a12
=

S2
n

a12
−a21, n = 0,1,2, ...

and given by formulas (1.17). So condition (1.12) of Theorem 1.3 turns to (1.19).
In view of (1.6):

ξ′

2ξ
− a′12

2a12
= ϕ+ξ

we have from (1.21),(2.28)

θ1 = ξ+
TrA

2
+

a′12

2a12
− ξ′

2ξ
=

TrA
2

−ϕ = a11−Sn+1 ≤ a11−Sn+1−2ξ≤ 0

θ2 = θ1−2ξ = a11−Sn+1−2ξ≤ 0.

From condition (1.20) it follows condition (1.8):∫ t
θ j(s)ds→−∞, j = 1,2, t → ∞.
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Finally condition (1.14) of Theorem 1.3 follows from (2.29) and (1.22):∣∣∣∣ 2ξ
a12

∣∣∣∣= 1∫ t
T a12e

∫ s
t (2Sn+1+a22−a11)dy

≤ 1
γ1

,

∣∣∣∣θ1−a11

a12

∣∣∣∣= ∣∣∣∣−Sn+1

a12

∣∣∣∣≤ const.

Proof of Example 1.2.From (1.16),(1.17) withn = 0 we have

ξ(t) =− 1

2
∫ t

T e
∫ s

t 2(S1− f )dy
, S1(t) =

∫ t

T
(g+2 f ′)e

∫ s
t 2 f dyds,

and conditions (1.19), (1.21) of Corollary 1.4 turns to condition (1.25). From the estimate

S1(t)≤ g0

∫ t

T
e

∫ s
t 2 f dyds≤ g0

∫ t

T
e2 f0(s−t)ds≤ g0

2 f0

condition (1.22) is fulfilled. The condition (1.20) follows from the estimates∫ t

T
e

∫ s
T 2(S1− f )dyds≤

∫ ∞

T
e(s−T)( g0

2 f0
− f0)ds=

1
f0− g0

2 f0

≡ 1
f1

< ∞

∫ t

T1

2ξ(τ)dτ =−
∫ t

T1

(
ln

∫ τ

T
e

∫ s
T 2(S1− f )dyds

)′
(τ)dτ =

ln

(∫ T1

T
e

∫ s
T 2(S1− f )dy

)
− ln

(∫ t

T
e

∫ s
T 2(S1− f )dy

)
≥ ln( f2(T,T1))+ ln( f1).

So (1.20) follows from (1.24):∫ t

T1

(2ξ+S1)dy≥ ln( f1 f2)+
∫ t

T1

S1dy→ ∞, t → ∞.

Proof of Corollary 1.5.Choosing

ϕ =
a22−a11

2
(2.30)

we get

ξ =− a12(t)
2

∫ t
T a12(s)e

∫ s
t (a22−a11)dyds

≤ 0, θ1 = a11,

θ2 = a11−2ξ = a11+
a12∫ t

T a12(s)e
∫ s

t (a22−a11)dyds
,

H(t) =
(

Tr(A)
2

)2

−|A|+a12

(
2ϕ+a11−a22

2a12
(t)
)′
−ϕ2(t) =

(
a11−a22

2

)2

+a12a21−ϕ2 = a12a21,
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H(t)
2ξ

=−a21(t)
∫ t

T
a12(s)e

∫ s
t (a22−a11)dyds.

So condition (1.12) of Theorem 1.3 turns to (1.26). The rest of the proof is similar to
the proof of Corollary 1.4.

Proof of Corollary 1.6.From

ϕ =
ξ′

2ξ
−ξ− a′12

2a12
=

a12

2ξ

(
ξ

a12

)′
−ξ = (k−1)ξ,

we get from (1.5)

H(t) =
(

Tr(A)
2

)2

−|A|+a12

(
a11−a22

2a12

)′
−ξ2 +k2ξ2 +k′ξ.

Choosingξ as in (1.30) we get

H(t)
ξ(t)

= k′(t)+k2(t)ξ(t), (2.31)

and Corollary 1.6 follows from Theorem 1.1.

Proof of Corollary 1.7.Corollary 1.7 follows from Theorem 1.3 by choosingξ as in (1.30).

Proof of Example 1.3.From (1.30)

ξ =
√

f 2(t)−1+ f ′(t).

To check conditions of Corollary 1.6 denote

P = ℜ[ f 2(t)−1+ f ′(t)] = t2α− t2β−1+αtα−1,

Q = ℑ[ f 2(t)−1+ f ′(t)] = 2tα+β +βtβ−1.

Fromα < 0,β < 0 we get

√
P2 +Q2 +P =

Q2√
P2 +Q2−P

=
Q2

2
(1+o(1)), t → ∞

and

ℜ[ξ] = ℜ[P+ iQ] =

√
P+

√
P2 +Q2

√
2

=
Q
2

(1+o(1)).

So condition (1.29) follows from

|ξ|= O(1), k′+k2ξ = O(t−2), t → ∞,
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and

±
∫ ∞

T
ℜ[ξ]dt =

1
2

∫ ∞

T
[2tα+β +βtβ−12(1+o(1))]dt < ∞.

Fromα >−1 it follows that conditions (1.8) (1.9) are satisfied as well:

ℜ[θ j ] = ℜ
[
±ξ− f (t)− ξ′

2ξ

]
=−tα(1+o(1))+O(1/t), t → ∞.

Further we will show that conditions of Corollary 1.7 are satisfied if conditions (1.35)
are fulfilled. Denote

V(t) = ℜ[ f −ξ] = tα−
√

(P+R)/2, R=
√

P2 +Q2.

By calculations

V(t) =
t2α− (P+R)/2

tα +
√

(P+R)/2
=

2t2α−P−R

2tα +
√

2P+2R
=

K(t)
(2tα +

√
2P+2R)(2t2α−P+R)

,

K = (2t2α−P)2−R2 = 4t2α[1−αtα−1−βt2β−1−α−β2t2β−2−α].

From the formulas forK andQ it follows that

K = t2α(1+o(1), Q = 2tα+β(1+o(1)).

To prove ∫ ∞

T
V(t)dt = ∞

we divide the plane(α,β) on 3 regions:

{α≥ β,α≥ 0}, {β≥ α,β≥ 0}, {α≤ 0,β≤ 0},

and prove it in each region separately.
Region 1:α≥ β, α≥ 0.

FromP = t2α(1+o(1)), R= t2α(1+o(1)), R−P = Q2

P+R = t2β(1+o(1)),

V(t) =
t2α(1+o(1))

tα +
√

(P+R)/2
=

t2α(1+o(1))
t3α = t−α(1+o(1)),

and if α < 1 then the formula is true.
Region 2:β≥ α, β≥ 0.

FromP=−t2β(1+o(1)), R= t2β(1+o(1)), R−P= t2β, R+P= Q2

R−P = t2α(1+
o(1)),

V(t) =
t2α(1+o(1))

tα +
√

(P+R)/2
=

t2α(1+o(1))
tα+2β = tα−2β(1+o(1)),

and if α+1−2β > 0 then the formula is true.
Region 3:α≤ 0, β≤ 0.



200 Gro R. Hovhannisyan

From P = −1+ o(1), R = 1+ o(1), R− P = R = 2+ o(1), R+ P = Q2

R−P =
t2α+2β(1+o(1)),

V(t) =
t2α(1+o(1))

tα +
√

(P+R)/2
=

t2α(1+o(1))
tα + tα+β = tα(1+o(1)),

and if α+1 > 0 then the formula is true.
Now we are ready to check conditions (1.8):

e
∫ t

T ℜ[θ1]ds = e
∫ t

T ℜ[ξ− f− ξ′
2ξ ]ds =∣∣∣∣ξ(T)

ξ(t)

∣∣∣∣1/2

e−
∫ t

T ℜ[ f−ξ]ds≤Ce−
∫ t

T V(s)ds→ 0, t → ∞.

Fromℜ[ξ]≥ 0 we get

e
∫ t

T ℜ[θ2]ds = e−
∫ t

T ℜ[ξ+ f− ξ′
2ξ ]ds =

∣∣∣∣ξ(T)
ξ(t)

∣∣∣∣1/2

e−
∫ t

T ℜ[ f ]ds≤Ce−
∫ t

T V(s)ds→ 0, t → ∞.

Conditions (1.13) are obviously true.
To check conditions (1.14) note thatα > 0 or β > 0 then

| f (t)|=
√

t2α + t2β → ∞, t → ∞,
| f ′|
| f |

≤ C
t

|ξ− f |=
√

f 2 + f ′−1− f =
f ′−1

f +
√

f 2 + f ′−1
=

f ′−1
f (1+o(1))

≤C

(
f ′

f
+

1
f

)
≤C

If α≤ 0 or β≤ 0 then
|ξ− f | ≤ |ξ|+ | f | ≤C.

From these estimates andξ′
ξ = 1+o(1)

t it follows that conditions (1.14) are satisfied.
At last (1.31) is satisfied in view of:

k(t) =
ξ′

2ξ2 =
1+o(1)

t
, k′(t) =

1+o(1)
t2 , t → ∞.

Proof of transition probability formula (1.40).From representation (2.10) we get

u1(t) = C1e
∫ t

0 θ1dy+C2e
∫ t

0 θ2dy =

√
C1C2e

∫ t
0

θ1+θ2
2 dy

(√
C1

C2
e

∫ t
0

θ1−θ2
2 dy+

√
C2

C1
e

∫ t
0

θ2−θ1
2 dy

)
.

In view of x+ 1
x = elnx +e− lnx = 2cosh(lnx), and

θ1−θ2 =−g′(t)
g(t)

, g(t) = g(0)−
∫ t

0
be

∫ s
0 2ϕdyds,

θ′12

θ12
= 2ϕ+

b′

b
+θ12
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we have

u1(t) = 2
√

C1C2e
∫ t

0
θ1+θ2

2 dycosh

(
1
2

ln
C1g(0)
C2g(t)

)
,

and

|u1(t)|2 = 4|C1C2|e
∫ t

0 ℜ(θ1+θ2)dy

∣∣∣∣cosh

(
1
2

ln
C1g(0)
C2g(t)

)∣∣∣∣2 .

From initial conditions (1.36) we get

C1 +C2 = 1, C1U1(0)+C2U2(0) = 0,

or

C1 =
−U2(0)

U1(0)−U2(0)
=

a11(0)−θ2(0)
2ξ(0)

, C2 =
U1(0)

U1(0)−U2(0)
=

θ1(0)−a11(0)
2ξ(0)

.

Further we have

|u1(t)|2 = 4|C1C2|e
∫ t

0 ℜ(θ1+θ2)dy

∣∣∣∣cosh

(
1
2

ln
C1g(0)
C2g(t)

)∣∣∣∣2 = B|cosh(α+ iβ)|2,

whereα,β are defined in (1.38) and

B = 4|C1C2|e
∫ t

0 ℜ(θ1+θ2)dy =
4|a11(0)−θ1(0)||a11(0)−θ2(0)|

|θ1(0)−θ2(0)|2
e

∫ t
0 ℜ(θ1+θ2)dy.

Formula (1.40) follows from this formula in view of

|cosh(α+ iβ)|2 = sinh2(α)+cos2(β).

Proof of (1.44).By direct calculations

g(t) = g(0)−2
∫ t

0
a12(t)e

∫ t
0 2ϕ(y)dy = g(0)−2

∫ t

0
ϕe

∫ s
0 2ϕ(z)dz =−e

∫ s
0 2ϕ(z)dz,

ξ =− g′(t)
2g(t)

=−ϕ(t), θ1 = ξ+
a′12

2a12
− ξ′

2ξ
=−ϕ+

ϕ′

2ϕ
− ϕ′

2ϕ
=−ϕ, θ2 = ϕ,

B(t) =
4|θ1(0)θ2(0)|
|θ1(0)−θ2(0)|2

e
∫ t

0 ℜ(θ1+θ2)dy = 1, ϕ = iW cos(tω)[cos(tE)+ i sin(tE)],

α(t) =
1
2

ℜ ln

(
−g(0)θ2(0)
g(t)θ1(0)

)
=−1

2
ℜ ln

(
g(t)
g(0)

)
=−1

2
ℜ ln

(
eiπ+

∫ t
0 2ϕ
)

,

α(t) =−1
2

ℜ(iπ+
∫ t

0
2ϕds) =−

∫ t

0
ℜ[ϕ]ds= W

∫ t

0
cos(sω)sin(sE)ds,

β(t) =−1
2

ℑ(iπ+
∫ t

0
2ϕds) =−π

2
−W

∫ t

0
cos(sω)cos(sE)ds.
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Proof of (1.50).From (1.37) we have

g0(t) = g(0)−2iW
∫ t

0
eis(ω+∆) cos(sω)ds=

−2W[(∆+ω)cos(tω)− iωsin(tω)]eit (∆+ω)

∆(∆+2ω)

ξ =− g′(t)
2g(t)

=− i∆(∆+2ω)cos(tω)
2(∆+ω)cos(tω)−2iωsin(tω)

, m=
2∆(∆+2ω)

(∆+ω)(∆+ω−E)
≥ 1,

θ1 = ξ+
a′12

a12
− ξ′

2ξ
=

i(E−∆−ω)
2

, θ2 =
i
2

(
E−∆−ω+

2∆(∆+2ω)cos(tω)
(∆+ω)cos(tω)− iωsin(tω)

)

B = B(t) =
4|θ1(0)θ2(0)|
|θ1(0)−θ2(0)|2

e
∫ t

0 ℜ(θ1+θ2)dy =
(∆+ω−E)2(m−1)(∆+ω)

√
(∆+ω)2 +ω2

∆2(∆+2ω)2

(2.32)

α =
1
2

ℜ ln

(
eit (∆+ω)[iωsin(tω)− (∆+ω)cos(tω)]

(∆+ω)(m−1)

)
=

1
2

ln
R

(∆+ω)(m−1)
(2.33)

β =
1
2

ℑ ln

(
eit (∆+ω)[iωsin(tω)− (∆+ω)cos(tω)]

(∆+ω)(m−1)

)
=

t(∆+ω)−η(t)
2

(2.34)

where
iωsin(tω)− (∆+ω)cos(tω) = Re−iη(t).
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