
ON A POSTERIORI ERROR ESTIMATES FOR

ONE-DIMENSIONAL CONVECTION-DIFFUSION

PROBLEMS

Relja Vulanović and Gro Hovhannisyan∗

January 24, 2005

Abstract

This paper is concerned with the upwind finite-difference discretization of a quasilinear
singularly perturbed boundary value problem without turning points. Kopteva’s a poste-
riori error estimate [N. Kopteva, Maximum norm a posteriori error estimates for a one-
dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 423–441 (2001)] is
generalized and improved.
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1 INTRODUCTION

We consider the singularly perturbed quasilinear convection-diffusion problem

Tu := −εu′′ − b(x, u)′ + c(x, u) = 0 for x ∈ X := [0, 1], u(0) = u(1) = 0, (1)

where ε is the perturbation parameter, 0 < ε � 1, and b and c are two C2(X × IR) functions
satisfying

bu(x, u) ≥ β > 0, cu(x, u) ≥ γ, x ∈ X, u ∈ IR, (2)

where γ ≤ 0. Since we assume that ε is small enough, it follows that β2 + 4εγ > 0 and then
by [1] the problem (1) has a unique solution uε ∈ C3(X). This solution in general exhibits a
boundary layer of exponential type near x = 0 and its derivatives can be estimated as in [2],

|u(k)
ε (x)| ≤M

(
1 + ε−ke−βx/ε

)
, x ∈ X, k = 0, 1, 2. (3)

Here an throughout the paper, M denotes any (in the sense of O(1)) positive constant which is
independent of ε and of the number of mesh points used when (1) is solved numerically. Thus,
M may have different values in different inequalities.

It moreover holds (cf. [3]) that

|uε(x)− u0(x)| ≤M
(
ε+ e−βx/ε

)
, x ∈ X, (4)
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where u0 is the unique C2(X) solution of the reduced problem

−b(x, u)′ + c(x, u) = 0, x ∈ X, u(1) = 0. (5)

Singularly perturbed boundary-value problems arise in many applications, see [4] and [5] for
instance. The problem (1) has been used frequently as a model for testing different numerical
methods for singular perturbation problems. In addition to the above mentioned papers [2] and
[3], some other more recent papers dealing with the numerical solution of (1) are [6], [7], and [8].
We are interested here in one of Kopteva’s results in [7], where the special case in which cu ≡ 0
is considered. We represent this case by writing also c(x, u) = −f(x). Kopteva’s result is an a
posteriori error estimate for the numerical solution of (1) with c(x, u) = −f(x), obtained by the
first-order upwind scheme. The error estimate is derived under the less restrictive smoothness
assumptions b ∈ C1(X × IR) and f ∈ C1(X).

In section 2, after introducing some further notation, we show that Kopteva’s approach
can be applied to the general case cu 6≡ 0 as well. However, we complete the derivation of
the a posteriori error estimate differently, viz. we expand it and ignore all the terms of order
higher than one. We do this first in section 3 for the special case c(x, u) = −f(x) and then in
section 4 for the general case. In both cases, we need smoother functions b and c (as indicated
in our assumptions above) and we make use of the special discretization meshes of Bakhvalov
or Shishkin types. The general case requires also that the reduced solution u0 be taken into
account. Finally, in section 5 we present results of some numerical experiments.

2 PRELIMINARIES

Let XN be a general discretization mesh with points xi, i = 0, 1, . . . , N , where 0 = x0 <
x1 < · · · < xN = 1. Let also Xi = [xi−1, xi], i = 1, 2, . . . , N , hi = xi − xi−1, i = 1, 2, . . . , N ,
h̄i = (hi + hi+1)/2, i = 1, 2, . . . , N − 1, h̄N = hN/2, and h = maxi hi.

We consider two special discretization meshes, both dense in the boundary layer. The first
one belongs to the meshes of Bakhvalov type. It is generated by a suitable function λ so that
xi = λ(i/N), i = 0, 1, . . . , N . A general description of mesh generating functions can be found
in [9] or [6] for instance. For simplicity, we consider here specifically

λ(t) =
{
ϕ(t) := εt/(q − t) if 0 ≤ t ≤ α,
ψ(t) := ϕ′(α)(t− α) + ϕ(α) if α ≤ t ≤ 1,

cf. [9] and [3]. q is here a mesh parameter, a fixed number in the interval (ε, 1), and α is the
unique number guaranteeing that ψ(1) = 1. Thus, λ is a strictly increasing C1(X) function
which maps X onto itself. Let XN

B denote the discretization mesh generated by the specified λ.
The other mesh is of Shishkin type. Shishkin meshes are piecewise equidistant and therefore

simpler, see [6] or [3] for instance. However, they produce somewhat less accurate results than
Bakhvalov meshes, cf. (7)-(8) below. For the problem (1), a Shishkin mesh consists of two
equidistant parts, one fine over the interval [0, τ ], and the other coarse over [τ, 1]. τ is here the
transition point between the fine and the coarse parts of the mesh, τ = (2ε/β) lnN . Then,

xi =
{

2τi/N for i = 0, 1, . . . , N/2,
τ + (1− τ)(2i/N − 1) for i = N/2, N/2 + 1, . . . , N ,

where we assume for simplicity that N is even. Let this mesh be denoted by XN
S .
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For both types of meshes, h = hN ≤M/N .
By wN = {wN

i } we denote an arbitrary mesh function on XN . For any mesh function we
assume that wN

0 = wN
N = 0. We discretize the problem (1) using the standard upwind scheme,

also known as the Engquist-Osher scheme [10],

TNwN
i := − ε

h̄i
(D+w

N
i −D−w

N
i )− δ+b(xi, w

N
i )

h̄i
+ c(xi, w

N
i ) = 0, i = 1, 2, . . . N − 1, (6)

where

D+w
N
i =

δ+w
N
i

hi+1
, D−w

N
i =

δ−w
N
i

hi
,

and
δ+w

N
i = wN

i+1 − wN
i , δ−w

N
i = wN

i − wN
i−1.

By [6], the discrete problem (6) has a unique solution, which we denote by wN
ε = {wN

ε,i}. This
solution is bounded uniformly with respect to ε. Let uN denote the piecewise linear interpolant
of wN

ε . Thus, uN ∈ C(X), it is a linear function on each interval Xi and uN (xi) = wN
ε,i for

i = 0, 1, . . . , N . If the special meshes are used, the following holds true according to [8] (the
same is proved in [6] but that proof requires a smoother function b):

|wN
ε,i − uε(xi)| ≤M

L

N
, i = 0, 1, . . . , N, (7)

where

L =
{

1 if XN = XN
B

lnN if XN = XN
S

. (8)

Another property of the special meshes is

|uε(x)− uε(xi−1)| ≤M
L

N
, x ∈ Xi. (9)

Analogously to the following form of the differential equation in (1):

−(Au)′ = 0, Au = εu′ + b(x, u) +
∫ 1

x
c(t, u(t)) dt,

the discretization (6) can be written down as

TNwi = −
ANwN

i+1 −ANwN
i

h̄i
= 0, i = 1, 2, . . . , N − 1, (10)

with

ANwN
i = εD−w

N
i + b(xi, w

N
i ) +

N∑
j=i

h̄ic(xj , w
N
j ), i = 1, 2, . . . , N.

This form of the scheme is similar to the one in [8], which uses a more general definition of h̄i.
In [7], on the other hand, the operator AN is defined in a slightly more general way (for the
case c(x, u) = −f(x) considered there). However, neither generalization is essential and we do
not consider them here.

Kopteva [7] considers the following special case of (1),

T̃ u := −εu′′ − b(x, u)′ = f(x), x ∈ X, u(0) = u(1) = 0. (11)
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The following result is crucial in her error analysis:

‖uN − uε‖∞ ≤ 2
β
‖T̃ uN − f‖∗, (12)

where
‖u‖∞ = ess sup

x∈X
|u(x)|, ‖u‖∗ = min

U :U ′=u
‖U‖∞.

The estimate (12) immediately gives

‖uN − uε‖∞ ≤ 2
β
‖η′‖∗ (13)

for the general problem, where for x ∈ Xi, i = 1, 2, . . . , N ,

η(x) = −ε(uN )′(x)− b(x, uN (x)) + C −
∫ 1

x
c(t, uε(t)) dt

with an arbitrary constant C. Thus,

η′(x) = TuN (x)− c(x, uN (x)) + c(x, uε(x)).

Since from (13) it follows that

‖uN − uε‖∞ ≤ 2
β
‖η‖∞, (14)

the a posteriori error estimate depends on how η is estimated.
We now transform η(x) for x ∈ Xi analogously to [7]. First we choose C as C = ANuN (xN )

so that, according to (10), ANuN (xi) = C for all i = 1, 2, . . . , N − 1. Then we use the fact that
(uN )′(x) = D−u

N (xi) for x ∈ Xi. We get

η(x) = −εD−u
N (xi)− b(x, uN (x)) +ANuN (xi)−

∫ 1

x
c(t, uε(t)) dt

= b(x, uN (xi))− b(x, uN (x)) +
N∑

j=i

h̄ic(xj , u
N (xj))−

∫ 1

x
c(t, uε(t)) dt.

Therefore,
η(x) = η1(x) + η2(x),

where for x ∈ Xi

η1(x) =
∫ xi

x
b(t, uN (t))′ dt (15)

and

η2(x) =
N∑

j=i

h̄ic(xj , u
N (xj))−

∫ 1

x
c(t, uε(t)) dt. (16)

In sections 3 and 4, we are going to use some approximate equalities ( .=) and inequalities
(

.
≤). They mean that the terms we omit are negligible relative to Mh.
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3 THE CASE c(x, u) = −f(x)

In this section, we consider the problem (11). Kopteva’s [7] error estimate is based on

‖η2‖∞ ≤ (‖f‖∞ + ‖f ′‖∞)h.

and
‖η1‖∞ ≤ β̄ max

1≤i≤N
|δ−uN (xi)|+Bh,

where
β̄ ≥ bu(x, u), x ∈ X, u ∈ IR, (17)

and
B = max

x∈X, |u|≤M∗
|bx(x, u)|.

The above constant M∗ results from an a priori estimate of the numerical solution,

‖uN‖∞ ≤M∗ :=
1
β

[2‖b(·, 0)‖∞ + ‖f‖∞] ,

see [7]. The assumption (17) is not as serious a restriction as it may seem. It is introduced in
this form for simplicity since it is possible to find an a priori domain containing uε and then
the boundedness of bu is guaranteed for u in that domain.

Thus, assuming that b ∈ C1(X × IR) and f ∈ C1(X), and using (14), Kopteva proves the
following a posteriori error estimate:

‖uN − uε‖∞ ≤ 2
β

[
β̄ max

1≤i≤N
|δ−uN (xi)|+ (B + ‖f‖∞ + ‖f ′‖∞)h

]
. (18)

This estimate is valid on any mesh XN .
We improve the estimate (18) by expanding and approximating both η1 and η2. We do this

under the assumptions that the discretization mesh is either XN
B or XN

S and that b and f are
smoother functions. Our approximation of η1 is given in the following lemma.

Lemma 1. Let b ∈ C2(X × IR) and let the discretization mesh be either XN
B or XN

S . Then for
x ∈ Xi, it holds that

η1(x)
.= (xi − x)

[
d

dx
b(x, uN (x))

]
x=xi

.

Proof. Expand b(t, uN (t))′ in (15) about xi to get

η1(x) = (xi − x)
[
d

dx
b(x, uN (x))

]
x=xi

+ ri,

where
|ri| ≤Mh2

i

[
1 + |D−u

N (xi)|+ (D−u
N (xi))2

]
.

The special mesh, (7), and (9) imply

|D−u
N (xi)| ≤ |D−[uN (xi)− uε(xi)]|+ |D−uε(xi)| ≤M

L

hiN
,

and therefore |ri| ≤M(L/N)2 and this term can be ignored.
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Lemma 2 deals with η2. This result is true not only on the special meshes but on all meshes
with h ≤M/N .

Lemma 2. Let f ∈ C2(X) and let the discretization mesh be either XN
B or XN

S . Then for
x ∈ Xi, it holds that

η2(x)
.=

(
xi − x− hi

2

)
f(xi).

Proof. Upon replacing c(x, u) in (16) with −f(x), we get

η2(x) =
∫ 1

x
f(t) dt−

N∑
j=i

h̄jf(xj) = ζ1 + ζ2,

where
ζ1 =

∫ xi

x
f(t) dt− hi

2
f(xi)

and ζ2 is the error of the trapezoidal formula for
∫ 1
xi
f(t) dt. Therefore,

|ζ2| ≤MNh3 ≤Mh2.

Moreover, by expanding f(t) in ζ1 around xi, it follows that

η2
.= ζ1

.= (xi − x)f(xi)−
hi

2
f(xi).

We can now prove the main result of this section.

Theorem 1. Let b ∈ C2(X × IR), f ∈ C2(X), and let b satisfy the condition in (2). Let uε be
the solution of (11) and let uN be the linear interpolant of the numerical solution of (6) on XN

B

or XN
S and with c(x, u) = −f(x). Then the following approximate a posteriori error estimate

holds true:

‖uN − uε‖∞
.
≤ 1
β

max
1≤i≤N

hi max{|f(xi)|, |2[b(x, uN (x))′]x=xi + f(xi)|}. (19)

Proof. Combining the results of Lemmas 1 and 2, we get

η(x) .= (xi − x)
{
[b(x, uN (x))′]x=xi + f(xi)

}
− hi

2
f(xi), x ∈ Xi.

After maximizing the above right-hand side, we conclude that

η(x)
.
≤ max

{
hi

2
|f(xi)|,

∣∣∣∣hi

[
b(x, uN (x))′

]
x=xi

+
hi

2
f(xi)

∣∣∣∣} , x ∈ Xi.

Then the assertion follows from (14).

Numerical results in section 5 confirm that the error estimate (19) is much sharper than
Kopteva’s (18). Another advantage of (19) is that it does not need the upper bounds for |bx|,
bu, and |f |. Note that the values of [b(x, uN (x))′]x=xi can be calculated easily after finding the
numerical solution {wN

ε,i}:

[b(x, uN (x))′]x=xi = bx(xi, u
N (xi))+ bu(xi, u

N (xi))D−u
N (xi) = bx(xi, w

N
ε,i)+ bu(xi, w

N
ε,i)D−w

N
ε,i.
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4 THE GENERAL CASE

We now return to the fully quasilinear problem (1). In this case, η2 cannot be treated in the
same way as in the previous section. Therefore, in this section we make use of u0, the solution
of the reduced problem, and assume that ε� h, which is not a serious practical restriction. Of
course, the reduced solution may be used in other ways in numerical methods for the problem
(1), see for instance [11] and [12]. We are interested here only in the numerical method given
in (6) and in seeing how the error of its solution can be estimated using u0. We assume that
u0 is known, but even if it is not, its numerical approximation of at least second order can be
used instead.

We first replace uε in (16) with u0. Because of (4), it follows that

η2(x)
.=

N∑
j=i

h̄jc(xj , u
N (xj))−

∫ 1

x
c(t, u0(t)) dt, x ∈ Xi.

Then the integral above can be modified and approximated like in the proof of Lemma 2. This
gives

η2(x)
.= σi +

(
x− xi +

hi

2

)
c(xi, u0(xi)), x ∈ Xi,

with

σi =
N∑

j=i

h̄j [c(xj , u
N (xj))− c(xj , u0(xj))].

Then we have the following generalization of Theorem 1.

Theorem 2. Let b, c ∈ C2(X×IR) and assume the condition (2). Let uε and u0 be the solutions
of (1) and (5) respectively. Also, let uN be the linear interpolant of the numerical solution of
(6) on XN

B or XN
S . Then, if ε � 1/N , the following approximate a posteriori error estimate

holds true:
‖uN − uε‖∞

.
≤ 1
β

max
1≤i≤N

max{Ai, Bi}, (20)

where
Ai = |hic(xi, u0(xi)) + 2σi|

and
Bi = |2hi[b(x, uN (x))′]x=xi − hic(xi, u0(xi)) + 2σi|.

The estimate (20) can be modified. For this, we need the following auxiliary result.

Lemma 3. Let u0 be the solution of the reduced problem (5) and let uN be the linear interpolant
of the numerical solution of (6) on XN

B or XN
S . Then,∣∣∣∣∫ xi

x
[uN (t))− u0(t)] dt

∣∣∣∣ ≤M

(
L

N2
+ ε

)
, x ∈ Xi.

Proof. Let uN
ε denote the linear interpolant of {uε(xi)}. It follows that∣∣∣∣∫ xi

x
[uN (t)− u0(t)] dt

∣∣∣∣ ≤M(I1 + I2 + I3),
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where

I1 =
∣∣∣∣∫ xi

x
[uN (t)− uN

ε (t)] dt
∣∣∣∣ ,

I2 =
∣∣∣∣∫ xi

x
[uN

ε (t)− uε(t)] dt
∣∣∣∣ ,

and

I3 =
∣∣∣∣∫ xi

x
[uε(t)− u0(t)] dt

∣∣∣∣ .
It holds that Ij ≤ML/N2, j = 1, 2. For I1, this follows from (7) and for I2, from (9). Finally,
I2 ≤M(ε/N + ε) because of (4).

Theorem 3. Let b, c ∈ C2(X×IR) and assume the condition (2). Let uε and u0 be the solution
of (1) and (5) respectively. Also, let uN be the linear interpolant of the numerical solution of
(6) on XN

B or XN
S . Then, if ε � 1/N , the following approximate a posteriori error estimate

holds true:

‖uN − uε‖∞
.
≤ 1
β

max
1≤i≤N

[
2β̄|δ−[uN (xi)− u0(xi)]|+ |hic(xi, u0(xi)) + 2σi|

]
. (21)

Proof. η1, given in (15), can be rewritten as

η1(x) =
∫ xi

x
[b(t, uN (t))′ ± b(t, u0(t))′] dt

=
∫ xi

x
[b(t, uN (t))− b(t, u0(t))]′ dt+

∫ xi

x
c(t, u0(t)) dt, x ∈ Xi.

Then it follows that
η(x) = η̄1(x) + η̄2(x),

with
η̄1(x) =

∫ xi

x
[b(t, uN (t))− b(t, u0(t))]′ dt, x ∈ Xi, (22)

and

η̄2(x) = η2(x) +
∫ xi

x
c(t, u0(t)) dt

.=
N∑

j=i

h̄jc(xj , u
N (xj))−

∫ 1

xi

c(t, u0(t)) dt, x ∈ Xi.

Using Nh ≤ M and the trapezoidal formula again (cf. the proof of Lemma 2), we get the
following approximation of η̄2:

η̄2(x)
.= σi +

hi

2
c(xi, u0(xi)), x ∈ Xi. (23)

Let us now approximate η̄1. Because of Lemma 3, for x ∈ Xi, it follows from (22) that

η̄1(x)
.=

∫ xi

x
[bu(t, uN (t))(uN )′(t)− bu(t, u0(t))u′0(t)] dt

.=
∫ xi

x
bu(t, uN (t))[(uN )′(t)− u′0(t)] dt

=
∫ xi

x
bu(t, uN (t))[D−u

N (xi)− u′0(t)] dt.
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We next replace u′0(t) with D−u0(xi) creating a negligible second-order error,

η̄1(x)
.= [D−(uN (xi)− u0(xi))]

∫ xi

x
bu(t, uN (t)) dt, x ∈ Xi.

From this we get
|η̄1(x)|

.
≤ β̄|δ−[uN (xi)− u0(xi)]|, x ∈ Xi, (24)

where β̄ is given in (17). We complete the proof using (24) and (23).

5 NUMERICAL RESULTS

We consider three test problems, two linear ones and one nonlinear. The first linear problem is
of the type described in (11),

−εu′′ − u′ = f(x), x ∈ X, u(0) = u(1) = 0. (25)

The second linear problem is with cu 6≡ 0,

−εu′′ − u′ + u = g(x), x ∈ X, u(0) = u(1) = 0. (26)

Both problems have the solution

uε(x) =
(e− 1)e−x/ε − e+ e−1/ε

1− e−1/ε
+ ex,

which determines the functions f and g above. The nonlinear problem is a classical example
due to O’Malley [13],

−εu′′ − euu′ +
π

2
sin

πx

2
e2u = 0, x ∈ X, u(0) = u(1) = 0. (27)

This problem has been used in many numerical experiments, including [7]. Its solution satisfies
uε(x) = uA(x) +O(ε), where

uA(x) = − ln
[(

1 + cos
πx

2

) (
1− 1

2
e−x/ε

)]
.

In all our numerical tests, we evaluate the exact maximum error,

E = E(N) = max
1≤i≤N−1

|wN
ε,i − ũε(xi)|,

where ũε = uA for the nonlinear problem (27) and ũε = uε for the linear problems. We compare
E to the a posteriori error estimates. If E∗ denotes an a posteriori error estimate, then we
calculate its efficiency as

Eff = E/E∗.

We expect that Eff ≤ 1. We also evaluate the numerical order of convergence,

Ord = Ord(N) = log2[E(N)/E(2N)].

We find Ord also for all a posteriori error estimates E∗.
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We use the problem (25) to compare our estimate (19) to Kopteva’s estimate (18). All the
quantities needed for (18) are easy to find. The comparison is given in Tables 1–3 on different
discretization meshes. It is clear that our estimate is superior to Kopteva’s. In her paper [7],
Kopteva does not calculate (18), but uses instead the quantity

∆ = max
1≤i≤N−1

|δ−wN
ε,i|,

although there is no theoretical guarantee that ∆ is an upper bound of the error. We too include
∆ in all our tables. It is not surprising that ∆ has the best efficiency, but we note that our
theoretically safe estimate gets very close to ∆ in some cases.

N E (19) Eff (18) Eff ∆ Eff
Ord Ord Ord Ord

32 1.30E−1 2.85E−1 .46 9.99E−1 .13 1.60E−1 .81
.94 .93 .99 .96

64 6.75E−2 1.50E−1 .45 5.04E−1 .13 8.23E−2 .82
.98 .96 .99 .98

128 3.43E−2 7.70E−2 .45 2.54E−1 .14 4.18E−2 .82
.99 .98 1.00 .99

256 1.73E−2 3.90E−2 .44 1.27E−1 .14 2.11E−2 .82
.99 .99 1.00 .99

512 8.68E−3 1.96E−2 .44 6.36E−2 .14 1.06E−2 .82

Table 1. Errors, error estimates, their numerical orders of convergence, and error-estimate
efficiency values for (25) solved on XN

B with q = 0.5.

N E (19) Eff (18) Eff ∆ Eff
Ord Ord Ord Ord

32 2.29E−1 4.25E−1 .54 2.43E+0 .09 3.63E−1 .63
.97 1.00 .97 .89

64 1.16E−1 2.12E−1 .55 1.24E+0 .09 1.96E−1 .59
.99 1.00 .98 .94

128 5.87E−2 1.06E−1 .55 6.29E−1 .09 1.02E−1 .57
.99 1.00 .99 .97

256 2.95E−2 5.31E−2 .56 3.16E−1 .09 5.21E−2 .57
1.00 1.00 .99 .99

512 1.48E−2 2.65E−2 .56 1.59E−1 .09 2.63E−2 .56

Table 2. Errors, error estimates, their numerical orders of convergence, and error-estimate
efficiency values for (25) solved on XN

B with q = 0.8.
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N E (19) Eff (18) Eff ∆ Eff
Ord Ord Ord Ord

32 1.71E−1 9.88E−1 .17 1.67E+0 .10 4.94E−1 .35
.75 .51 .70 .51

64 1.02E−1 6.92E−1 .15 1.03E+0 .10 3.46E−1 .29
.79 .63 .74 .63

128 5.89E−2 4.47E−1 .13 6.17E−1 .10 2.23E−1 .26
.82 .72 .79 .71

256 3.33E−2 2.72E−1 .12 3.57E−1 .09 1.36E−1 .24
.85 .77 .82 .77

512 1.85E−2 1.59E−1 .12 2.02E−1 .09 7.96E−2 .23

Table 3. Errors, error estimates, their numerical orders of convergence, and error-estimate
efficiency values for (25) solved on XN

S .

All the results shown here are obtained for ε = 10−9. Due to the ε-uniformity of the
numerical methods used, the results for other small values of ε are similar.

Comparing Tables 1–3, we can see that the Bakhvalov-type mesh XN
B produces much better

results than the Shishkin mesh XN
S . On XN

B , the error estimate (19) has greater efficiency for
q = 0.8 than for q = 0.5. Greater values of the parameter q cause greater density of the mesh
in the boundary layer. In the remaining tables, we use only XN

B with q = 0.8.
Kopteva’s estimate (18) cannot be applied to (26). We use this problem to compare our two

estimates (20) and (21). We see in Table 4 that they are relatively close, (21) being somewhat
worse, as should be expected. The same conclusion applies to Table 5 which contains the results
for the nonlinear problem (27). In this example, our estimates cannot compete with ∆, but the
comparison is not fair. The low efficiency of (20) and (21) is mainly caused by the large value
of the coefficient 2/β since β = exp(−π/2) (β̄ needed in (21) is simply 1), see [3]. Note that
this difficulty is not present in problems (25) and (26), where β = β̄ = 1. In order to illustrate
the influence of the coefficient 2/β, we include in Table 5 the quantity

∆∗ =
2
β

∆.

The efficiency of ∆∗ is in fact worse than that of the estimates in (20) and (21).

N E (20) Eff (21) Eff ∆ Eff
Ord Ord Ord Ord

32 1.73E−1 4.25E−1 .41 4.76E−1 .36 3.67E−1 .47
.95 1.00 1.07 .90

64 8.91E−2 2.12E−1 .42 2.27E−1 .39 1.97E−1 .45
.98 1.00 1.05 .95

128 4.52E−2 1.06E−1 .43 1.10E−1 .41 1.02E−1 .44
.99 1.00 1.02 .97

256 2.28E−2 5.31E−2 .43 5.41E−2 .42 5.21E−2 .44
.99 1.00 1.01 .99

512 1.14E−2 2.65E−2 .43 2.68E−2 .43 2.63E−2 .43

Table 4. Errors, error estimates, their numerical orders of convergence, and error-estimate
efficiency values for (26) solved on XN

B with q = 0.8.
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N E (20) Eff (21) Eff ∆ Eff ∆∗ Eff
Ord Ord Ord Ord Ord

32 1.26E−1 1.18E+0 .11 1.53E+0 .08 1.81E−1 .69 1.74E+0 .07
.94 1.00 1.13 .80 .80

64 6.53E−2 5.90E−1 .11 6.99E−1 .09 1.04E−1 .63 1.00E+0 .07
.97 1.00 1.10 .89 .89

128 3.34E−2 2.95E−1 .11 3.26E−1 .10 5.63E−2 .59 5.41E−1 .06
.98 1.00 1.06 .94 .94

256 1.69E−2 1.48E−1 .11 1.56E−1 .11 2.93E−2 .58 2.82E−1 .06
.99 1.00 1.04 .97 .97

512 8.50E−3 7.38E−2 .12 7.60E−2 .11 1.50E−2 .57 1.44E−1 .06

Table 5. Errors, error estimates, their numerical orders of convergence, and error-estimate
efficiency values for (27) solved on XN

B with q = 0.8.
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[6] T. Linß, H.-G. Roos, and R. Vulanović, Uniform pointwise convergence on Shishkin-type
meshes for quasilinear convection-diffusion problems, SIAM J. Numer. Anal., 38, 897–912
(2000).

[7] N. Kopteva, Maximum norm a posteriori error estimates for a one-dimensional convection-
diffusion problem, SIAM J. Numer. Anal., 39, 423–441 (2001).

[8] T. Linß, Sufficient conditions for uniform convergence on layer-adapted grids, Appl. Numer.
Math., 37, 241–255 (2001).

[9] R. Vulanović, On a numerical solution of a type of singularly perturbed boundary value
problem by using a special discretization mesh, Univ. Novom Sadu Zb. Rad. Prir.-Mat.
Fak. Ser. Mat., 13, 187–201 (1983).

[10] L. Abrahamsson and S. Osher, Monotone difference schemes for singular perturbation
problems, SIAM J. Numer. Anal., 19, 979–992 (1982).

12



[11] J. Lorenz, Combinations of initial and boundary value methods for a class of singular
perturbation problems. In Proceedings of the Conference on the Numerical Analysis of
Singular Perturbation Problems, (Edited by P.W. Hemker and J.J.H. Miller), pp. 295–315,
Academic Press, London, (1979).
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