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Abstract. Let G be a finite group. Denote by Irr(G) the set of all irreducible

complex characters of G. Let cd(G) be the set of all irreducible complex charac-
ter degrees of G forgetting multiplicities, that is, cd(G) = {χ(1) : χ ∈ Irr(G)}
and let X1(G) be the set of all irreducible complex character degrees of G
counting multiplicities. Let H be a finite nonabelian simple classical group. In

this paper, we will show that if G is a finite group and X1(G) = X1(H) then

G is isomorphic to H. In particular, this implies that the nonabelian simple
classical groups of Lie type are uniquely determined by the structure of their

complex group algebras.

1. Introduction

All groups considered are finite and all characters are complex characters. Let G
be a group. Denote by Irr(G) the set of all irreducible characters of G. Let cd(G)
be the set of all irreducible character degrees of G forgetting multiplicities, that is,
cd(G) = {χ(1) : χ ∈ Irr(G)}. The degree pattern of G, denoted by X1(G), is the
set of all irreducible character degrees of G counting multiplicities. Observe that
X1(G) is the first column of the ordinary character table of G. We follow [5] for
notation of nonabelian simple groups.

In [3, Problem 2∗], R. Brauer asked whether two groups G and H are isomorphic
given that two group algebras FG and FH are isomorphic for all fields F. This is
false in general. In fact, E.C. Dade [6] constructed two non-isomorphic metabelian
groups G and H such that FG ∼= FH for all fields F. In [8], M. Hertweck showed
that this is not true even for the integral group rings. Note that if ZG ∼= ZH, then
FG ∼= FH for all fields F, where Z is the ring of integer numbers. For nonabelian
simple groups, W. Kimmerle obtained a positive answer in [12]. He outlined the
proof asserting that if G is a group and H is a nonabelian simple group such that
FG ∼= FH for all fields F then G ∼= H. We now consider the same problem but only
assume that the complex group algebras of the two groups are isomorphic. We note
that by Molien’s Theorem, knowing the structure of the complex group algebra is
equivalent to knowing the first column of the ordinary character table.

Question. Which groups can be uniquely determined by the structure of their com-
plex group algebras?

For example, it was shown in [21] that the symmetric groups are uniquely deter-
mined by the structure of their complex group algebras. Independently, this result
was also proved by Nagl in [16]. It was conjectured that all nonabelian simple
groups are uniquely determined by the structure of their complex group algebras.
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This conjecture was verified in [22, 23] for the alternating groups, the sporadic
simple groups, the Tits group and the simple exceptional groups of Lie type. As
pointed out by the referee, a sketch for the case of alternating and sporadic simple
groups was already given in [12] and the case for the alternating groups has been
worked out in [17]. The following stronger conjecture was proposed by Huppert in
[9].

Huppert’s Conjecture. Let H be any nonabelian simple group and G be a group
such that cd(G) = cd(H). Then G ∼= H ×A, where A is abelian.

Obviously, if Huppert’s Conjecture were true then all nonabelian simple groups
would be uniquely determined by the structure of their complex group algebras.
However this conjecture is still open. In [9] and his preprints, Huppert himself
verified the conjecture for L2(q), Sz(q2), 18 out of 26 sporadic simple groups, and
several small alternating and simple groups of Lie type. Also T. Wakefield verified
the conjecture for L3(q), U3(q) and S4(q) in [26, 27]. Recently, Huppert’s Conjecture
for the remaining simple groups of Lie type of rank 2 was verified by T. Wakefield
and the author, see [25] and the references therein.

The main purpose of this paper is to complete the proof of the following result.

Theorem 1.1. Let H be a nonabelian simple group and G be a finite group. If
X1(G) = X1(H), then G ∼= H.

As the alternating groups, the sporadic simple groups, the Tits group and the
simple exceptional groups of Lie type have been handled in [22, 23], we only need
to consider the simple classical groups of Lie type. Now Theorem 1.1 and [1,
Theorem 2.13] yield:

Corollary 1.2. Let G be a group and let H be a nonabelian simple group. If
CG ∼= CH, then G ∼= H.

Thus all nonabelian simple groups are uniquely determined by the structure of
their complex group algebras. We mention that abelian groups are not determined
by the structure of their complex group algebras. In fact the complex group al-
gebras of any two abelian groups of the same orders are isomorphic. There are
also examples of nonabelian p-groups with isomorphic complex group algebras, for
example the dihedral group of order 8 and the quaternion group of order 8. How-
ever it is conjectured that if X1(G) = X1(H) and H is solvable, then G is also
solvable. We can ask the same question for the character degree sets instead of
the degree patterns. Finally the same question could be asked for the finite field of
prime order. This problem for p-groups due to G. Higman is known as the Modular
Isomorphism Problem and is still open.

Notation. If cd(G) = {s0, s1, · · · , st}, where 1 = s0 < s1 < · · · < st, then we
define di(G) = si for all 1 ≤ i ≤ t. Then di(G) is the ith smallest degree of the
nontrivial character degrees of G. The largest character degree of G is denoted by
b(G). If n is an integer then we denote by π(n) the set of all prime divisors of n, and
by np, the largest p-part of n, where p is a prime. We will write π(G) to denote the
set of all distinct prime divisors of the order of G. If NEG and θ ∈ Irr(N), then the
inertia group of θ in G is denoted by IG(θ). The set of all irreducible constituents
of θG is denoted by Irr(G|θ). Other notation is standard.
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2. Preliminaries

We refer to [4, 13.8, 13.9] for the classification of unipotent characters and the
notion of symbols. Note that every simple group of Lie type S in characteristic p
(excluding the Tits group) possesses an irreducible character of degree |S|p, which
is the size of the Sylow p-subgroup of S, and is called the Steinberg character of S
and is denoted by StS . We first show that generically, the degree of the Steinberg
character of S is not the second smallest nontrivial character degree of S.

Lemma 2.1. If S 6= 2F4(2)′ is a simple group of Lie type in characteristic p defined
over a field of size q, then |S|p > d2(S) whenever S 6= L2(2f ) and d2(L2(2f )) = 2f .

Proof. As cd(L2(2f )) = {1, 2f − 1, 2f , 2f + 1}, we have that d2(L2(2f )) = 2f . If
S = L2(q) with q odd, then d1(L2(q)) = (q + δ)/2 where q ≡ δ(mod 4), and
d2(S) = q − 1. If S = L3(2), L3(3) or L3(4), then the result follows from [5]. If
S = L3(q) with q ≥ 5, then S possesses characters of degrees q2 + q and q2 + q + 1
which are less than StS(1) = q3, and if S = U3(q) with q ≥ 3, then S possesses
characters of degrees q(q − 1) and q2 − q + 1 which are less than q3 = StS(1) (see
[26]). For the remaining simple groups of Lie type, if S is a simple exceptional
group of Lie type then the result follows from [14], and if S is a simple classical
group of Lie type of Lie rank at least 2, the result follows from Table 2. The two
unipotent character degrees together with the symbols in Table 2 were obtained by
using [4, 13.8]. �

Lemma 2.2. (Zsigmondy [29]). Let q ≥ 3, n ≥ 3 be integers. Then qn − 1 has a
prime ` such that ` ≡ 1 (mod n) and ` does not divide qm − 1 for any m < n.

Such an ` is called a primitive prime divisor. The following result is an easy
consequence of the previous lemma.

Lemma 2.3. Let n ≥ 3 be an integer and let q ≥ 3 be an odd prime power. Then
(qn − 1)/(q − 1), (qn + 1)/(q + 1) and (qn + 1)/2 cannot be 2- powers.

Proof. As q is odd and n ≥ 3, qn− 1 has a primitive prime divisor ` such that `− 1
is divisible by n so that ` ≥ n + 1 ≥ 4 and also by definition of primitive prime
divisor, we have that ` - q − 1 so that ` ≥ 5 is a divisor of (qn − 1)/(q − 1), and
hence (qn−1)/(q−1) cannot be a power of 2. Observe that if ` is a primitive prime
divisor of q2n − 1 = (qn − 1)(qn + 1) then ` must divide qn + 1. Moreover ` - q2 − 1
so that ` - q+1. Hence ` | (qn+1)/(q+1) and ` ≥ 2n+1 ≥ 7. Thus (qn+1)/(q+1)
cannot be a 2-power. Finally, if (qn+1)/2 is a 2-power then qn+1 is also a 2-power.
Applying the same argument as above, we obtain a contradiction. �

The next result gives a lower bound for the largest character degree of the alter-
nating groups. A proof can be found in [23, Lemma 2.2].

Lemma 2.4. If n ≥ 10, then b(An) ≥ 2n−1.

We also need some results in character theory, in particular Clifford theory.

Lemma 2.5. ([9, Lemma 3]). Suppose N EG and θ ∈ Irr(N). Let I = IG(θ).

(a) If θI =
∑k
i=1 ϕi, ϕi ∈ Irr(I), then ϕGi ∈ Irr(G) and |G : I|ϕi(1) ∈ cd(G).

(b) If θ extends to ψ ∈ Irr(I), then (ψτ)G ∈ Irr(G) for all τ ∈ Irr(I/N). In
particular, θ(1)τ(1)|G : I| ∈ cd(G).
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(c) If ρ ∈ Irr(I) such that ρN = eθ, then ρ = θ0τ0, where θ0 is a character of an
irreducible projective representation of I of degree θ(1) while τ0 is the character of
an irreducible projective representation of I/N of degree e.

Lemma 2.6. ([9, Lemma 2]). Suppose N EG and χ ∈ Irr(G).
(a) If χN = θ1+θ2+· · ·+θk with θi ∈ Irr(N), then k divides |G/N |. In particular,

if χ(1) is prime to |G/N | then χN ∈ Irr(N).
(b) (Gallagher’s Theorem) If χN ∈ Irr(N), then χψ ∈ Irr(G) for every ψ ∈

Irr(G/N).

Let χ ∈ Irr(G), χ is said to be of p-defect zero for some prime p if |G|/χ(1) is
coprime to p, or equivalently χ(1)r = |G|r. We say that χ(1) is an isolated degree of
G if χ(1) is divisible by no proper nontrivial character degree of G, and no proper
multiple of χ(1) is a character degree of G.

Lemma 2.7. ([24, Lemma 2.4]). If S is a simple group of Lie type in characteristic
p with S 6= 2F4(2)′, then the degree of the Steinberg character of S with degree |S|p
is an isolated degree of S.

If G is a group, then we denote by F (G) the Fitting subgroup of G. By results
of G. Michler and W. Willems, every simple group of Lie type has an irreducible
character of p-defect zero for any prime p (see [28]). Using this result, we obtain
the following.

Lemma 2.8. Let H be a finite simple group of Lie type and G be a finite group.
If cd(G) = cd(H) and |G| = |H|, then F (G) is trivial.

Proof. Suppose that cd(G) = cd(H) and |G| = |H|. It suffices to show that G
has no minimal normal abelian subgroups. By way of contradiction, assume that
A is a nontrivial minimal normal abelian subgroup of G. It follows that A is an
elementary abelian r-group for some prime r. By [28, Theorem], H possesses an
irreducible character χ of r-defect zero, that is χ(1)r = |H|r. As cd(G) = cd(H),
we deduce that G has an irreducible character ψ ∈ Irr(G) such that ψ(1) = χ(1).
Furthermore, as |G| = |H|, we obtain that ψ(1)r = χ(1)r = |H|r = |G|r. We now
have that |G : A|r = |G|r/|A| < |G|r = ψ(1)r so that ψ(1) cannot divide |G : A|,
which contradicts Ito’s Theorem [11, Theorem 6.15]. �

The next two lemmas will be used to obtain the final contradiction in the proof
of the main theorem. These results are taken from [2].

Lemma 2.9. If S is a nonabelian simple group, then there exists a nontrivial
irreducible character θ of S that extends to Aut(S).

Proof. This is [2, Theorems 2, 3, 4]. �

Lemma 2.10. ([2, Lemma 5]). Let N be a minimal normal subgroup of G so that
N ∼= Sk, where S is a nonabelian simple group. If θ ∈ Irr(S) extends to Aut(S),
then θk ∈ Irr(N) extends to G.

Finally, for each simple classical group of Lie type S, we list an upper bound for
b(S) in Table 1. These upper bounds were obtained in [18, Theorem 2.1].
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3. Non-containment of character degree sets of simple groups

We assume the following set up. Let q = pa be a power of a prime p and let H
be one of the following simple classical groups:

Ln(q), Un(q), Oε2n(q)(n ≥ 4), S2n(q), O2n+1(q)(n ≥ 3).

Define

C = {Lε4(2), Lε4(3), Lε5(2), S6(2), S6(3), O±8 (2), O±8 (3), O7(3)}.
The main purpose of this section is to prove the following result.

Proposition 3.1. Let G be a perfect group and let M be a maximal normal subgroup
of G so that G/M is a nonabelian simple group. Assume that cd(G) = cd(H) and
|G| = |H|. Then G/M is a simple group of Lie type in characteristic p.

Proof. As G/M is a nonabelian simple group, using the classification of finite simple
groups, we will eliminate other possibilities forG/M and hence the result will follow.
We remark that as cd(G/M) ⊆ cd(H), we obtain that di(G/M) ≥ di(H) for all i,
and also b(G/M) ≤ b(H). Moreover as |G| = |H| and |G| = |G/M | · |M |, we deduce
that |G/M | divides |H| and hence π(G/M) ⊆ π(H).

As cd(G) = cd(H) and H is a simple classical group of Lie type in characteristic
p, there exists χ ∈ Irr(G) such that χ(1) = |H|p = |G|p as |G| = |H|. Let θ ∈ Irr(M)
be an irreducible constituent of χ when restricted to M, and let I = IG(θ).

Case 1. G/M is a sporadic simple group or the Tits group.
Subcase θ is not G-invariant. Then M E I � G. As χ ∈ Irr(G|θ), we deduce

from [11, Theorem 6.11] that χ = φG for some φ ∈ Irr(I|θ). We have that χ(1) =
|G : I|φ(1) = |H|p. Hence I/M is a proper subgroup of G/M whose index is a
prime power. By [7, Theorem 1], one of the following cases holds.

(a) G/M ∼= M11, I/M ∼= M10
∼= A6 · 23 and |G : I| = 11;

(b) G/M ∼= M23, I/M ∼= M22 and |G : I| = 23.
In both cases, we have that |G : I| = p is prime and (p, |I/M |) = 1. As χ(1) =

pφ(1) is a p-power, we deduce that φ(1) is also a p-power so that (φ(1), |I/M |) = 1.
By Lemma 2.6(a), φ is an extension of θ to I. As I/M is nonabelian, there exists
ψ ∈ Irr(I/M) such that ψ(1) > 1. By Lemma 2.5(b), we obtain that (φψ)G(1) =
|G : I|φ(1)ψ(1) = χ(1)ψ(1) ∈ cd(G), which contradicts Lemma 2.7.

Subcase θ is G-invariant. Then χM = eθ, where e ≥ 1 and χ(1) = |H|p.
Assume first that θ extends to θ0 ∈ Irr(G). By Gallagher’s Theorem, we obtain

that µθ0, where µ ∈ Irr(G/M), are all the irreducible constituents of θG. Hence
χ = τθ0 for some τ ∈ Irr(G/M). Assume that τ(1) = 1. Since G/M is nonabelian,
it has an irreducible character ψ with ψ(1) > 1. Then ψ(1)θ0(1) = ψ(1)τ(1)θ0(1) =
ψ(1)χ(1) ∈ cd(G), contradicting Lemma 2.7. Hence τ(1) > 1 and so it is a nontrivial
p-power degree of G/M. By [15, Theorem 1.1], one of the following cases holds.

(i) G/M ∈ {M11,M12} and τ(1) = 11 or 24;
(ii) G/M ∈ {M24, Co2, Co3} and τ(1) = 23;
(iii) G/M = 2F4(2)′ and τ(1) = 33 or 211.

Assume that (G/M, τ(1)) 6∈ {(M11, 2
4), (2F4(2)′, 211)}. By [5], there exists ψ ∈

Irr(G/M) with ψ(1) = mτ(1) for some m > 1. We have ψ(1)θ0(1) = mτ(1)θ0(1) =
mχ(1) is a degree of G, which contradicts Lemma 2.7.

Assume that (G/M, τ(1)) ∈ {(M11, 2
4), (2F4(2)′, 211)}. Then p = 2 and so H

is a classical group in characteristic 2. By (i) and (iii) above and the fact that
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cd(G/M) ⊆ cd(H), we deduce that H has two distinct nontrivial prime power
degrees. By applying [15, Theorem 1.1], we obtain that τ(1) = |H|2 and H ∼=
Ln(2a) or Un(2a) with n ≥ 5 an odd prime. We now have that n(n − 1)a/2 = 4
or 11, according to whether G/M ∼= M11 or 2F4(2)′, respectively. It follows that
n(n− 1)a = 8 or 22. However both cases are impossible as n = 5 or n ≥ 7.

Thus θ is not extendible to G. Since χ(1) = eθ(1) = |H|p, we deduce that e is a
nontrivial p-power and it is also a degree of a proper projective irreducible represen-
tation of G/M. By [15, Theorem 1.1], we obtain that (G/M, e) = (M12, 2

5), (J2, 2
6)

or (Ru, 213). Observe that the first case cannot occur as M12 possesses a character
of degree 24 < 25 ≤ χ(1) = |H|2, which contradicts Lemma 2.7. Hence G/M ∼= J2
or Ru and H is of characteristic 2.

As the character tables of the sporadic simple groups G/M under consideration
and the simple classical groups H in C are available in [5], it is routine to check
that cd(G/M) * cd(H) and so cd(G) 6= cd(H) in these cases. Therefore we can
assume that H 6∈ C. We consider the following cases.

(a) H = Lεn(q), q = 2a, n ≥ 4. As H 6∈ C, it follows from [20, Table II] that
d1(H) ≥ (qn − q)/(q + 1). As H 6∈ C, we deduce that d1(H) > 14 = d1(J2)
so that G/M cannot be isomorphic to J2. Now assume that G/M ∼= Ru. Then
d1(Ru) = 378. We have d1(H) > d1(G/M) unless H = Lεn(2)(6 ≤ n ≤ 10), Lε4(4)
or Lε5(4). However we can check that π(Ru) * π(H) in any of these cases.

(b) H = S2n(q), q = 2a, n ≥ 3. It follows from [20, Table II] that d1(H) ≥
(qn − 1)(qn − q)/(2(q + 1)). As d1(H) > 14 = d1(J2), we deduce that G/M ∼= Ru.
We have d1(H) > d1(G/M) = 378 unless H = S2n(2) (4 ≤ n ≤ 5) or S6(4). But
then π(Ru) * π(H) in any of these cases.

(c) H = O−2n(q), q = 2a, n ≥ 4. As H 6∈ C, it follows from [20, Table II] that
d1(H) ≥ (qn + 1)(qn−1 − q)/(q2 − 1). As d1(H) > 14 we deduce that G/M ∼= Ru.
We have d1(H) > d1(G/M) unless H = O−8 (2) or O−10(2). However π(Ru) * π(H)
in any of these cases.

(d) H = O+
2n(2), n ≥ 5. As H 6∈ C, it follows from [20, Table II] that d1(H) ≥

(2n−1)(2n−1−1)/3. As d1(H) > 14, we deduce that G/M ∼= Ru. We have d1(H) >
d1(G/M) unless H = O+

10(2). But then π(Ru) * π(H) in this case.

(e) H = O+
2n(q), q = 2a > 2, n ≥ 4. As H 6∈ C, it follows from [20, Table II] that

d1(H) ≥ (qn − 1)(qn−1 + q)/(q2 − 1) > d1(Ru) > d1(J2), a contradiction.
Thus G/M cannot be a sporadic simple group nor the Tits group.
Case 2. G/M is an alternating group. Assume that G/M ∼= Am, where m ≥ 5.

As A8
∼= L4(2), we consider A8 as a simple group of Lie type in characteristic 2.

Assume first that 5 ≤ m 6= 8 ≤ 10. Using [5], we can see that cd(Am) * cd(H)
for any H ∈ C. Hence we assume that H 6∈ C. Using [20, Table II], we observe that
d1(H) ≥ 10 so that d1(Am) ≤ 9 < d1(H) for 5 ≤ m 6= 8 ≤ 10, which is impossible
as cd(Am) ⊆ cd(H).

Thus we can assume m ≥ 11. Hence {7, 11} ⊆ π(Am). If H ∈ C, then {7, 11} 6⊆
π(H) so that π(Am) * π(H), which is a contradiction. We now assume that H 6∈ C.
We outline our general argument here. As m ≥ 11, we obtain that d1(Am) = m−1.
As cd(G/M) = cd(Am) ⊆ cd(H), we deduce that d1(Am) = m − 1 ≥ d1(H). By
Lemma 2.4 we have that b(Am) ≥ 2m−1 so that b(Am) ≥ 2d1(H). Moreover as
b(Am) ≤ b(G) = b(H), we deduce that b(Am) ≤ qN(H)+1, where |H|p = qN(H) by

Table 1. Therefore we obtain qN(H)+1 ≥ 2d1(H). However for each possibility of
H, we can check that the latter inequality cannot happen. For example, assume
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H = Ln(q), q = pa, n ≥ 4. As H 6∈ C, it follows from [20, Table II] that d1(H) ≥
(qn − q)/(q − 1), and hence qn(n−1)/2+1 ≥ 2(q

n−q)/(q−1). It is routine to check that
for any pairs (n, q) 6∈ {(4, 2), (4, 3), (5, 2)}, the latter inequality cannot happen.

Case 3. G/M ∼= S is a simple group of Lie type in characteristic r 6= p. As
cd(G/M) ⊆ cd(H), we deduce that H possesses two distinct irreducible characters
χi, i = 1, 2 with χ1(1) = StS(1) = |S|r and χ2(1) = StH(1) = |H|p. It follows from
[15, Theorem 1.1] that one of the following cases holds.

(a) H = Ln(q), q ≥ 3, n is odd prime, (n, q−1) = 1 and χ1(1) = (qn−1)/(q−1).
Then |S|r = (qn − 1)/(q − 1) is a prime power and n is an odd prime and thus
n ≥ 5. By [20, Table IV], we have d2(H) ≥ (qn − 1)/(q − 1) so that d2(H) ≥ |S|r
and hence d2(S) ≥ d2(H) ≥ |S|r. By Lemma 2.1, we have that S = L2(2f ) for
some f ≥ 2. Hence 2f = (qn − 1)/(q − 1), where n ≥ 5. It follows that q is odd,
n ≥ 5 and so the latter equation cannot happen by Lemma 2.3.

(b) H = Un(q), n is odd prime, (n, q + 1) = 1 and χ1(1) = (qn + 1)/(q + 1). As
n ≥ 4 is an odd prime, we deduce that n ≥ 5 is an odd prime. By [20, Table V], we
have |S|r = χ1(1) ≤ d2(H) and thus as d2(H) ≤ d2(S) we obtain d2(S) ≥ |S|r so
that by Lemma 2.1, S = L2(2f ) with f ≥ 2, and thus 2f = (qn + 1)/(q+ 1). Hence
q is odd, n ≥ 5 and 2f = (qn + 1)/(q + 1), which contradicts Lemma 2.3.

(c) H = S2n(q), q = pa, p is odd prime, an is 2-power and χ1(1) = (qn + 1)/2.
By [20, Theorem 5.2] we see that |S|r = χ1(1) ≤ d2(H) and thus as d2(H) ≤ d2(S)
we obtain that |S|r ≤ d2(S), so that by Lemma 2.1, S = L2(2f ) with f ≥ 2, and
then 2f = (qn + 1)/2, where n ≥ 3 and q is odd, contradicting Lemma 2.3.

(d) H = S2n(3), n ≥ 3 is a prime and χ1(1) = (3n−1)/2. By [20, Theorem 5.2] we
see that |S|r = χ1(1) ≤ d1(H) and thus as d1(H) ≤ d1(S) we obtain d1(S) ≥ |S|r,
which is impossible by Lemma 2.1.

(e) H = S6(2) and χ1(1) ∈ {7, 33}. Assume that χ1(1) = |S|r = 7. Then S must
be a simple group of Lie type of Lie rank 1 in characteristic 7. The only possibility
for S is L2(7). However cd(L2(7)) * cd(S6(2)). Finally, if χ1(1) = |S|r = 33, then
S is a simple group of Lie type of Lie rank at most 2 in characteristic 3. Moreover
|S| divides |S6(2)| = 29 · 34 · 5 · 7. The only possibility for S is U3(3). However
cd(U3(3)) * cd(S6(2)).

Thus G/M is a simple group of Lie type in characteristic p. The proof is now
complete. �

4. Proof of Theorem 1.1

In view of [22, 23], we can assume that H is a simple classical group of Lie type
in characteristic p. Moreover by [9, 10, 26, 27] we can assume that H is one of the
following simple groups: Lεn(q), Oε2n(q), n ≥ 4, S2n(q), O2n+1(q), n ≥ 3, where q is
a power of p. Assume that G is a group with X1(G) = X1(H). As H is simple,
it has exactly one linear character which is the trivial character so that G also
possesses a unique linear character and hence G must be perfect. Now let M be a
maximal normal subgroup of G. It follows that G/M is a nonabelian simple group.
As X1(G) = X1(H), we deduce that |G| = |H| and cd(G) = cd(H). By Proposition
3.1, we obtain that G/M is a simple group of Lie type in characteristic p.

Assume first that M = 1. Then G is a simple group of Lie type in the same
characteristic p as that of H, cd(G) = cd(H) and |G| = |H|. By Artin’s Theorem
[13, Theorem 5.1], we have that {G,H} = {S2n(q), O2n+1(q)}, n ≥ 3, q odd or
{G,H} = {L4(2), L3(4)}. Using [5], we can check that cd(L4(2)) 6= cd(L3(4)).
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Table 1. Upper bounds for the largest degree of simple classical groups

S Lεn(q) S2n(q) O2n+1(q) Oε2n(q)

b(S) ≤ qn(n−1)/2+1 qn
2+1 qn

2+1 qn(n−1)+1

Hence it suffices to show that cd(S2n(q)) 6= cd(O2n+1(q)), where n ≥ 3 and q is
odd. We will show that cd(S2n(q)) * cd(O2n+1(q)). Now it is well-known that the
symplectic group Sp2n(q) has four distinct irreducible Weil characters denoted by
ηn, η

∗
n of degree (qn − 1)/2, and ξn, ξ

∗
n of degree (qn + 1)/2 (see [19]). Let j be

the unique central involution in Sp2n(q). Then S2n(q) ∼= Sp2n(q)/〈j〉. Moreover let
δ = (−1)(q−1)/2. By [19, Lemma 2.6(i)] we have that if χ ∈ {ξn, ξ∗n}, then χ(j) =
δnχ(1). If χ ∈ {ηn, η∗n}, then χ(j) = −δnχ(1). Remark that if χ ∈ Irr(Sp2n(q)) then
χ ∈ Irr(S2n(q)) if and only if χ(j) = χ(1). It follows that (qn + 1)/2 ∈ cd(S2n(q))
if n(q − 1)/2 is even; and (qn − 1)/2 ∈ cd(S2n(q)) if n(q − 1)/2 is odd. Thus
either (qn − 1)/2 ∈ cd(S2n(q)) or (qn + 1)/2 ∈ cd(S2n(q)). Using [5], we can see
that cd(S6(3)) * cd(O7(3)) and hence we can assume that (n, q) 6= (3, 3). By using
[20, Theorem 6.1], we have that d1(O2n+1(q)) > (qn + 1)/2 > (qn − 1)/2 so that
cd(S2n(q)) * cd(O2n+1(q)).

Therefore M 6= 1. Let K ≤M be a minimal normal subgroup of G. By Lemma
2.8, we deduce that K is nonabelian so that K ∼= Sk, where k ≥ 1 and S is
a nonabelian simple group. By Lemma 2.9, S possesses a nontrivial irreducible
character θ which is extendible to Aut(S). By Lemma 2.10, θk ∈ Irr(K) ex-
tends to ϕ ∈ Irr(G), with ϕ(1) = θ(1)k > 1. Now by Gallagher’s Theorem, we
have that ϕψ ∈ Irr(G) for any ψ ∈ Irr(G/K). As G/M is a simple group of
Lie type in characteristic p, it has an irreducible character γ of degree |G/M |p.
Hence γ(1) is a nontrivial p-power degree of G. By Lemma 2.7, we deduce that
γ(1) = StH(1) = |G|p. As Irr(G/M) ⊆ Irr(G/K), we deduce that ϕγ ∈ Irr(G) and
hence ϕ(1)γ(1) = ϕ(1)|H|p ∈ cd(G), contradicting Lemma 2.7. This contradiction
proves the theorem.
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