
ON A GENERALIZATION OF M-GROUP

TUNG LE†, JAMSHID MOORI‡, AND HUNG P. TONG-VIET[

Abstract. In this paper, we show that if for every nonlinear complex irre-

ducible character χ of a finite group G, some multiple of χ is induced from an

irreducible character of some proper subgroup of G, then G is solvable. This
is a generalization of Taketa’s theorem on the solvability of M -group.

1. Introduction and Notation

All groups in this paper are finite and all characters are complex characters. For
a group G, let Irr(G) denote the set of all irreducible characters of G. An irreducible
character χ of a group G is monomial if it is induced from a linear character of
a subgroup of G, that is χ = λG, where λ ∈ Irr(U) with λ(1) = 1 and U ≤ G.
A group G is called an M -group if every irreducible character of G is monomial.
A well known theorem of Taketa says that all M -groups are solvable. (see [10,
Theorem 5.12].) There have been many generalizations of Taketa’s theorem in the
literature. Observe that if χ ∈ Irr(G) is a monomial character induced from the
subgroup U ≤ G and the linear character λ ∈ Irr(U), then U/Ker(λ) is cyclic, in
particular U/Ker(λ) is solvable. With this observation, Dornhoff showed in [7] that
a group G is solvable provided that every irreducible character of G is induced from
an irreducible character of a solvable section of G. More generally, Isaacs proved
in [11] that if every irreducible character χ ∈ Irr(G) is induced from an irreducible
character λ of a subgroup H such that H/Ker(λ) ∈ F, then G is in F, where F
is a class of groups closed under isomorphisms, subgroups and extensions. If we
choose F to be the class of solvable groups, then we obtain the result of Dornhoff
mentioned above. A group G is called a Quasi-Solvable Induced (QSI) group if every
irreducible character χ of G has some multiple which is induced from a character
λ of a subgroup U with U/Kerλ solvable. Recently, König [15] showed that every
QSI group is solvable. Obviously, this is a generalization of both Dornhoff’s and
Taketa’s theorems. The main purpose of this paper is to remove the solvability
assumption on the quotient U/Ker(λ).

Recall that an irreducible character of a group is imprimitive if it is induced
from an irreducible character of some proper subgroup and it is primitive if it is
not induced by any character of any proper subgroups. For convenience reason, we
make the following definitions. A nonlinear character χ ∈ Irr(G) is called a multiply
imprimitive character (or m.i character for short) induced from the pair (U, λ) if
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there exist a proper subgroup U of G and an irreducible character λ ∈ Irr(U) such
that λG = mχ for some nonnegative integer m. Moreover, a group G is said to be
an MI-group if every nonlinear irreducible character of G is an m.i character.

Let N EG. We write Irr(G|N) = Irr(G)− Irr(G/N). If N is a normal subgroup
of G and every nonlinear irreducible character in Irr(G|N) is an m.i character, then
G is called an MI-group relative to N. We now state our main result.

Theorem 1.1. Let N be a normal subgroup of a group G. If G is an MI-group
relative to N, then N is solvable.

If we take N = G′, then the set Irr(G|N) is exactly the set of all nonlinear
irreducible characters of G. Now assume that G is an MI-group. Then G is an
MI-group relative to G′ and thus by applying Theorem 1.1, we deduce that G′ is
solvable and so G is solvable. Therefore, we have proved the following corollary.

Corollary 1.2. Every MI-group is solvable.

This gives a positive answer to [2, Problem 162]. We also obtain an answer to
[2, Problem 123] as follows.

Corollary 1.3. Let H ≤ G be a proper subgroup of a group G. Suppose that for
any λ ∈ Irr(H) with λ 6= 1H , we have λG = mχ for some χ ∈ Irr(G) and some
integer m ≥ 1. Then the normal closure of H in G is solvable. In particular, H is
solvable.

For the proof of Theorem 1.1, in Section 2 we present some results needed for re-
ducing the problem to a question concerning the existence of a special m.i character
in nonabelian simple groups. Using the classification of nonabelian simple groups,
we obtain the answer to this question which is stated as Theorem 1.4 below. This
theorem will be verified in Sections 3, 4 and 5. Finally, the proofs of Theorem 1.1
and Corollary 1.3 will be carried out in the last section.

Theorem 1.4. If S is a nonabelian simple group, then S has a nonlinear irreducible
character which is extendible to Aut(S) but it is not an m.i character.

Notation. If G is a group, then we write π(G) to denote the set of all prime
divisors of the order of G. For a normal subgroup N of G, if θ ∈ Irr(N), then the
set of all irreducible constituents of θG is denoted by Irr(G|θ). If n is a positive
integer and p is a prime then np and np′ are the largest p-part and p′-part of n,
respectively. The greatest common divisor of two integers a and b is denoted by
gcd(a, b). We follow [5] for notation of simple groups. Other notation is standard.

2. Reduction to simple groups

The following lemma is a modification of Lemma 2.1 in [15].

Lemma 2.1. Let K and N be normal subgroups of a group G. Suppose that G is
an MI-group relative to N. Then the following hold.

(i) G/K is an MI-group relative to NK/K;
(ii) G is an MI-group relative to K provided that K ≤ N.

Proof. Assume that χ̂ ∈ Irr(G/K|NK/K). Then χ̂ can be considered as a character
χ of G with K ≤ Ker(χ) = Ker(χ̂). As NK/K * Ker(χ̂) but K ≤ Ker(χ̂), we
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deduce that N 6≤ Ker(χ) so χ ∈ Irr(G|N) with K ≤ Ker(χ). Since G is an MI-
group relative to N, we deduce that mχ = λG, where U � G, λ ∈ Irr(U) and
m ≥ 1. We have

K ≤ Ker(λG) =
⋂
g∈G

(Ker(λ))g

and hence K ≤ Ker(λ) E U. Thus λ can be considered as a character λ̂ of U/K.
For x ∈ G, we have

λ̂G/K(xK) =
1

|U/K|
∑

yK ∈ G/K
(xK)yK ∈ U/K

λ̂((xK)yK)

=
1

|U |
∑
y ∈ G
xy ∈ U

λ(xy) = λG(x) = mχ(x) = mχ̂(xK).

Therefore χ̂ ∈ Irr(G/K|NK/K) is an m.i character induced from (U/K, λ̂). This
proves (i). If K ≤ N ≤ G, then (ii) is obvious since Irr(G|K) ⊆ Irr(G|N). �

Lemma 2.2. Let χ ∈ Irr(G) be an m.i character induced from a subgroup U � G
and λ ∈ Irr(U) with λG = mχ. Then

(i) If χ(g) 6= 0 for some g ∈ G, then gG ∩ U 6= ∅.
(ii) We have |G : U |λ(1) = mχ(1), χ(1) ≥ mλ(1) and |G : U | ≥ m2.

Proof. As λG = mχ, if g ∈ G with χ(g) 6= 0, then λG(g) = mχ(g) 6= 0. By
the definition of induced characters, we have that xgx−1 ∈ U for some x ∈ G,
which proves (i). For (ii), by comparing the degrees, we have λG(1) = mχ(1),
which implies that |G : U |λ(1) = mχ(1). By the Frobenius reciprocity, we have
m = (λG, χ) = (λ, χU ) so χU = mλ + ψ for some character ψ of U. Hence χ(1) =
mλ(1) +ψ(1) ≥ mλ(1), which proves the second statement of (ii). Finally, we have
|G : U |λ(1) = mχ(1) ≥ m2λ(1), which deduces that |G : U | ≥ m2. �

Let χ ∈ Irr(G) be an m.i character induced from (U, λ), that is, mχ = λG for
some m ≥ 1. We will show that U could be chosen to be a maximal subgroup of G.
By definition, U is a proper subgroup of G, and thus there is a maximal subgroup
H of G that contains U. Let µ ∈ Irr(H) be an irreducible constituent of λH . Write
λH = µ+ψ, where ψ is a character of H. By the transitivity of character induction,
we have that (λH)G = λG = mχ so µG +ψG = mχ. Thus µG = eχ for some e ≥ 1,
which means that χ is an m.i character induced from (H,µ), where H is maximal
in G and µ ∈ Irr(H).

The next result is similar to Lemma 2.8 in [18].

Lemma 2.3. Let N be a normal subgroup of a group G and let θ ∈ Irr(N) be
a nonlinear character of N. Suppose that θ extends to χ ∈ Irr(G). If χ is an m.i
character of G, then θ is also an m.i character of N.

Proof. Assume that χ is an m.i character of G. Then there exist a proper subgroup
U � G, λ ∈ Irr(U) and m ≥ 1 such that mχ = λG. Assume that T = {r1, r2, · · · , rt}
is a set of representatives for the double cosets of U and N in G. As χ is an extension
of θ, we have that χN = θ. By the discussion above, we can and will assume that
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U is maximal in G. As λG = mχ and χN = θ, we deduce that mθ = (λG)N . By
Mackey’s Lemma, we have that

(λG)N =

t∑
j=1

((λrj )Urj∩N )N

so

mθ =

t∑
j=1

((λrj )Urj∩N )N .

It follows that for each j, we obtain that ((λrj )Urj∩N )N is a multiple of θ. In
particular, we have that (λU∩N )N = kθ for some k ≥ 1.

Assume first that N ≤ U. We then have that λN = kθ. By Lemma 2.2(ii), we
obtain that χ(1) = θ(1) ≥ mλ(1) = mkθ(1), which implies that mk = 1, hence
m = k = 1. By Lemma 2.2(ii) again, we have |G : U |λ(1) = mχ(1) and thus
|G : U |kθ(1) = mθ(1), which implies that |G : U | = 1, a contradiction.

Assume next that N � U. As U is maximal in G, we obtain that G = UN. Hence
by Mackey’s Lemma, we have that

(λG)N = (λU∩N )N = mθ.

Since N � U, we deduce that U ∩ N � N. Let µ ∈ Irr(U ∩ N) be an irreducible
constituent of λU∩N . It follows that µN = lθ for some l ≥ 1. Hence θ is an m.i
character of N induced from (U ∩N,µ) as required. �

Lemma 2.4. Suppose that N is a unique minimal normal nonabelian subgroup of
a group G. Assume that N = R1 × R2 × · · · × Rk, where each Ri is isomorphic to
a nonabelian simple group R, and k ≥ 1. Let θ be a nonlinear irreducible character
of R such that θ extends to Aut(R). Let ϕ = θk ∈ Irr(N). If χ ∈ Irr(G) is any
extension of ϕ to G and χ is an m.i character of G, then θ is an m.i character of
R.

Proof. Since N ∼= Rk is the unique minimal normal subgroup of G, we deduce that
G embeds into Aut(N) ∼= Aut(R) o Sk, where Sk denotes the symmetric group of
degree k. As θ ∈ Irr(R) extends to Aut(R), by [3, Lemma 2.5] we deduce that
ϕ = θk ∈ Irr(N) extends to G. Assume that χ ∈ Irr(G) is an extension of ϕ
and that χ is an m.i character of G. By Lemma 2.3, we deduce that ϕ is an m.i
character of N induced from (U, λ), where U is a maximal subgroup of N, and
λ ∈ Irr(U). Then mϕ = λN for some m ≥ 1. As N = R1 × R2 × · · · × Rk and
U is maximal in N, there exists 1 ≤ i ≤ k such that Ri � U. Without loss of
generality, we assume that R1 � U. Since R1 EN, we obtain that N = R1U, here

we identify R1 with R1 × 1 × · · · × 1 E N. Observe that ϕR1 = θ(1)k−1θ1, where
θ1 ∈ Irr(R1) is N -invariant. Since N = R1U, by Mackey’s Lemma, we obtain that

(λN )R1
= λR1

U1
, where U1 := R1∩U � R1. Then it follows from mϕR1

= (λN )R1
that

mθ(1)k−1θ1 = λR1

U1
. Let λ1 ∈ Irr(U1) be any irreducible constituent of λU1

, we then

have that λR1
1 = m1θ1 for some m1 ≥ 1. Therefore we conclude that θ1 ∈ Irr(R1)

is an m.i character of R1. Hence θ is an m.i character of R as wanted. �

3. Finite simple groups of Lie type

In this section, we aim to prove Theorem 1.4 for simple groups of Lie type.
Note that we will consider the Tits group as a sporadic simple group rather than a
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simple group of Lie type and exclude it from consideration in this section. Now it
is well known that every simple group of Lie type S in characteristic p possesses an
irreducible character of degree |S|p, the size of the Sylow p-subgroup of S, which
is called the Steinberg character of S and is denoted by StS . (See [4, Chapter 6].)
Moreover the Steinberg character of S is always extendible to the full automorphism
group Aut(S). (See for instance [3, Theorem 2].) Using the information on the
character values of the Steinberg character given in [4] and also the classification
of the maximal subgroups of simple groups of Lie type satisfying certain properties
given in [14, 17], we will prove that apart from some exceptions, the Steinberg
character cannot be an m.i character. This is achieved in Lemma 3.8. Finally, for
these exceptions, using [5] we will find another nonlinear irreducible character of S
which extends to Aut(S) but it is not an m.i character.

We first draw some consequences under the assumption that the Steinberg char-
acter is an m.i character. Recall that if G is a group and p ∈ π(G), then an element
g ∈ G is called p-semisimple (or just semisimple when p is understood) whenever
the order of g is coprime to p.

Lemma 3.1. Let S be a simple group of Lie type in characteristic p. Suppose that
mStS = λS , where λ ∈ Irr(H),m ≥ 1 and H is a maximal subgroup of S. Then the
following hold.

(1) gS ∩H 6= ∅ for any p-semisimple element g ∈ S.
(2) p - m and λ(1)p = |H|p.
(3) |S : H|p ≥ m ≥ |S : H|p′ .

Proof. By [4, Theorem 6.5.9], we have StS(g) = ±|CS(g)|p for any p-semisimple
element g ∈ S. Thus for any p-semisimple element g ∈ S, we obtain that λS(g) =
mStS(g) 6= 0. By the definition of induced characters, we obtain (1). For g = 1 ∈ S,
we have that mStS(1) = |S : H|λ(1). As StS(1) = |S|p and λ(1)p | |H|p, we deduce
that |S : H|pλ(1)p divides |S|p and so |S : H|pλ(1)p = |S|p as it is divisible by
StS(1). This implies that p - m and λ(1)p = |H|p, which proves (2). Finally as
mStS(1) = |S : H|λ(1), by applying (2) we have

m = |S : H|p′λ(1)p′ ≥ |S : H|p′ .
By Lemma 2.2(ii), we obtain that m2 ≤ |S : H| and so

m2 ≤ |S : H|p|S : H|p′ ≤ m|S : H|p,
which implies that |S : H|p ≥ m ≥ |S : H|p′ as required. �

The following result is a well known theorem due to Zsigmondy.

Lemma 3.2. (See [13, Theorems 5.2.14, 5.2.15]). Let q and n be integers with q ≥ 2
and n ≥ 3. Assume that (q, n) 6= (2, 6). Then qn− 1 has a prime divisor ` such that

• ` does not divide qm − 1 for m < n.
• If ` | qk − 1 then n | k.
• ` ≡ 1 (mod n).

Such an ` is called a primitive prime divisor. We denote by `n(q) the smallest
primitive prime divisor of qn−1 for fixed q and n. When n is odd and (q, n) 6= (2, 3)
then there is a primitive prime divisor of q2n − 1 which we denote by `−n(q).

Let S be a nonabelian simple group. If S E G ≤ Aut(S), then G is said to be
an almost simple group with socle S and we write soc(G) to denote the socle S
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of G. We refer to [13, Chapter 4] for the detailed descriptions and definitions of
the geometric classes Ci(S) (1 ≤ i ≤ 8) and the class S(S) of subgroups of simple
classical groups S.

Suppose that S is a simple group of Lie type in characteristic p and that StS is
an m.i character of S induced from the pair (H,λ), where H is a maximal subgroup
of S and λ ∈ Irr(H). It follows from Lemma 3.1(1) that gS ∩ H 6= ∅ for any
semisimple element g ∈ S and thus πp′(S) ⊆ π(H), where πp′(S) is the set of all
primes divisors of |S| different from the characteristic p. Hence two cases can occur,
either π(H) = π(S) or π(H) = πp′(S). We first consider the case π(H) = πp′(S).
This implies that |H| is prime to p and that H possesses some semisimple element
of certain maximal torus of S. Hence we can apply [17] for classical groups and [14]
for exceptional groups of Lie type to obtain the possibilities for the pairs (S,H).

Lemma 3.3. Let S be a nonabelian simple group of Lie type in characteristic p
and let H be a maximal subgroup of S. Suppose that p - |H| and that for any
p-semisimple element g ∈ S, we have that gS ∩H 6= ∅. Then

(S,H) ∈ {(L2(5),A4), (L2(5),S3), (L2(7),S4), (L3(2), 7 : 3)}.

Proof. It follows from the hypotheses that πp′(S) = π(H).
Case 1. S is a simple classical group in characteristic p defined over a field of size

q = pf . For each p-semisimple element g ∈ S, by the hypotheses some conjugate of
g belongs to H. In particular H possesses some element of the maximal torus of S
with order given in [17, Table I]. By [17, Theorem 1.1], the following cases hold.

(A) H ∈ ∪8i=1Ci(S). Then one of the following cases holds.
(A1) H ∈ C1(S) and S ∈ {Lεn(q),O2n+1(q),O+

2n(q)}, where n is at least 3, 3, and
4, respectively. By inspecting the orders of maximal subgroups in class C1(S) in
[13, §4.1] and using the restriction on n, we see that p always divides |H|. Hence
this subcase cannot happen.

(A2) H ∈ C8(S) and S ∼= S2n(q), where n ≥ 2. By [13, Proposition 4.8.16] we
have that H ∼= Oε

2n(q) with q even. Obviously p always divides |H|.
(A3) H ∈ C3(S) and S ∈ {Lεn(q)(n ≥ 3 odd),S2n(q)(n ≥ 2),Oε

2n(q)(n ≥ 4)}. By
inspecting the orders of maximal subgroups in class C3(S) in [13, §4.3] and using
the restriction on n, we see that p always divides |H| unless S ∼= Lεn(q) where n is
an odd prime and H is of type GLε1(qn) · n.

Assume that n = 3. By [13, Proposition 4.3.6] , we have |H| = 3(q2 + εq + 1)/d,
where d = gcd(3, q−ε1). In this case, S has an element of order (q2−1)/d. It follows
that (q2 − 1)/d must divide 3(q2 + εq + 1)/d, and so (q2 − 1) = (q − ε1)(q + ε1)
divides 3(q2 + εq + 1). As gcd(q + ε1, q2 + εq + 1) = 1, we deduce that q + ε1 | 3,
which implies that q+ε1 = 1 or q+ε1 = 3 since q+ε1 > 0. Solving these equations,
we obtain that q = 2 and ε = ± or q = 4 and ε = −. Since U3(2) is not simple and
42 − 1 - 3(42 − 4 + 1), we deduce that S ∼= L3(2) and H ∼= 7 : 3.

Now suppose that n ≥ 5 is odd prime. Assume first that both `n−1(q) and
`ε(n−2)(q) exist. Observe that these two primes are distinct. Then S has elements
of orders `n−1(q) and `ε(n−2)(q), respectively. Thus `n−1(q) and `ε(n−2)(q) divides
|H|. By Lemma 3.2 neither `n−1(q) nor `ε(n−2)(q) can divide |GLε1(qn)| = qn − ε1
since both n − 1 and n − 2 cannot divide 2n as n ≥ 5 is odd prime. As a result,
both `n−1(q) and `ε(n−2)(q) must be equal to the prime n as |H| | n(qn− ε1), which
is impossible. We now consider the case when either `n−1(q) or `ε(n−2)(q) does
not exist. By Lemma 3.2, we deduce that S ∼= Lε7(2) or S ∼= U5(2). If the first
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case holds, then `ε5(2) ∈ π(S) exists. However we see that `ε5(2) cannot divide
7(27− ε1) so `ε5(2) cannot divide |H|, a contradiction. For the latter case, we have
H ∼= 11 : 5. But π2′(U5(2)) = {3, 5, 11} 6= π(H).

(B) H ∈ S(S). Then the following cases hold.

(B1) (S,H) ∈ {(L4(2),A7), (U3(3),L2(7)), (U3(5),A7), (U4(3),A7),
(U4(3),L3(4)), (U5(2),L2(11)), (U6(2),M22), (O7(3),S9), (S8(2),L2(17))}.

(B2) (S, soc(H)) = (O+
8 (q),O7(q)) with q odd, or (O+

8 (q),S6(q)) with q even.

For these cases, we see that the characteristic p of S divides the order of H.
(C) S ∼= L2(q),U4(2) or (S,H) ∈ {(L3(4),L3(2)), (S4(3), 24 ·A5), (O+

8 (2),A9)}.
(C1) S ∼= U4(2). As U4(2) ∼= S4(3), the characteristic p of S is either 2 or 3.

Assume first that p = 2. In this case, S contains 2-semisimple elements of order 5
and 9. However by using [5], no maximal subgroup of S possesses two such elements
simultaneously. Now assume that p = 3. In this case, by using [5] again we can
check that p divides the order of every maximal subgroup of S.

(C2) (S,H) ∈ {(L3(4),L3(2)), (S4(3), 24 · A5), (O+
8 (2),A9)}. For these cases, the

characteristic p of S divides the order of |H|.
(C3) S ∼= L2(q), where q ≥ 4.
Assume first that S ∼= L2(4) ∼= L2(5). By [5], every maximal subgroup of S is of

even order so we can assume that p = 5. In this case, using [5] again, we deduce
that H ∼= S3 or A4. Assume next that S ∼= L2(7) ∼= L3(2). By [5], we can see that if
p = 2, then H ∼= 7 : 3 and if p = 7, then H ∼= S4. Assume that S ∼= L2(9) ∼= A6 or
L2(8). By [5], the order of every maximal subgroup of S is divisible by p. Assume
that S ∼= L2(q) where q ∈ {11, 13}. By [5], S possesses p-semisimple elements of
order (q+1)/2 and (q−1)/2 respectively. However no maximal subgroups of S can
possess both such elements simultaneously.

Thus we can assume that q ≥ 16. Since H is a maximal subgroup of S and
p - |H|, inspecting the list of maximal subgroups of L2(q) in [12], the following
cases hold.

(i) H is a dihedral group of order q + 1, with q odd.
(ii) H is a dihedral group of order q − 1, with q odd.
(iii) H ∼= S4 and q ≡ ±1 (mod 8), q prime or q = p2 and 3 < p ≡ ±3 (mod 8).
(iv) H ∼= A4 and q ≡ ±3 (mod 8) with q > 3 prime.
(v) H ∼= A5 and q ≡ ±1 (mod 10), q prime or q = p2 and p ≡ ±3 (mod 10).
It follows that q ≥ 17 is odd and thus S has two p-semisimple elements of order

(q ± 1)/2 so H possesses elements of such orders. As gcd((q − 1)/2, (q + 1)/2) = 1,
we deduce that (q2 − 1)/4 divides |H|. Since q ≥ 17, we can see that (q2 − 1)/4 >
60 = |A5| and that (q2 − 1)/4 > q + 1 and hence H cannot be one of the groups
given in (i)− (v) above.

Case 2. S is a simple exceptional group of Lie type in characteristic p with
S 6= 2F4(2)′. As πp′(S) = π(H), |H| is divisible by all the primes in the second
column of [14, Table 10.5] so it follows from the proof of [14, Theorem 4] and [14,
Table 10.5] that S ∼= G2(q) with q > 2 odd and H ∼= L2(13) where {`3(q), `6(q)} =
{7, 13} and p 6= 13. By [1, 15.1], S possesses a cyclic maximal torus of order q2− 1.
Now if q = 3 then q2 − 1 = 8. But then L2(13) has no element of order 8. Thus
q ≥ 4 and hence q2 − 1 ≥ 15 which is strictly larger than any element orders in
L2(13). Hence H contains no element of order q2 − 1, a contradiction. �
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We now consider the case π(S) = π(H). In this case we can apply [14, Corollary 5]
to obtain the possibilities for the pairs (S,H).

Lemma 3.4. Let S be a nonabelian simple group of Lie type in characteristic p
and let H be a maximal subgroup of S. Suppose that p | |H| and that for any p-
semisimple element g ∈ S, we have that gS ∩ H 6= ∅. Then one of the following
cases holds.

(1) S ∼= S4(3) and H ∼= 24 : A5.
(2) S ∼= S2n(q) and H ∼= Ω−2n(q) · 2 ∼= SO−2n(q), with q, n even.
(3) S ∼= Ω2n+1(q) and H ∼= Ω−2n(q) · 2, with n ≥ 2 even and q odd.
(4) S ∼= O+

2n(q) and H ∼= Ω2n−1(q) with n ≥ 4 even.
(5) S ∼= S4(q) and H ∼= L2(q2) · 2 with q ≥ 4 even.

Proof. It follows from the hypotheses that π(S) = π(H) and thus by [14, Corol-
lary 5], one of the following cases holds.

(i) S ∼= U4(2) ∼= S4(3) and H ∼= 24 : A5. In this case, the characteristic of
S is either 2 or 3. If p = 3, then the pair (S,H) = (S4(3), 24 : A5) satisfies the
hypotheses of the lemma. If p = 2, then S has a 2-semisimple element of order 9
but H has no such element.

(ii) S ∼= L6(2) and H ∼= L5(2), P1 or P5. As H is maximal in S, we deduce that H
is isomorphic to the maximal parabolic subgroup P1 or P5. Hence H ∼= 25 : L5(2).
In this case, S possesses an element of order 63 but H contains no such element.

(iii) S ∼= O+
8 (2) and H ∼= A9 or Pi, i = 1, 3, 4. Note that Pi ∼= 26 : A8 for

i = 1, 3, 4. In any cases, H has only one conjugacy class of elements of order 5
while S has 3 conjugacy classes of elements of order 5. Therefore these cases cannot
happen.

(iv) S ∼= S2n(q) with n ≥ 2, n, q even and Ω−2n(q) EH. In this case, H ∈ C8(S)
and by [13, Proposition 4.8.6], we have that H ∼= SO−2n(q) ∼= Ω−2n(q) · 2.

(v) S ∼= O2n+1(q) with n ≥ 3 even, q odd and Ω−2n(q)EH. In this case, H ∈ C1(S)
and by [13, Proposition 4.1.6], we have that H ∼= Ω−2n(q) · 2.

(vi) S ∼= O+
2n(q) with n ≥ 4 even and Ω2n−1(q)EH. In this case, H ∈ C1(S) and

by [13, Proposition 4.1.6], we have that H ∼= Ω2n−1(q).
(vii) S ∼= S4(q) and L2(q2)EH. As S4(2) is not simple, we assume that q ≥ 3. If

q = 3, then S4(3) ∼= Ω5(3) ∼= U4(2) and H ∼= S6. This case will be handled in (viii)
so we assume that q > 3. Assume first that q > 3 is odd. Using the isomorphism
S4(q) ∼= Ω5(q), it follows from [17, Theorem 1.1] that H ∈ C1(Ω5(q)) and by [13,
Proposition 4.1.6] we have that H ∼= Ω−4 (q) · 2 ∼= L2(q2) · 2. This possibility is
included in case (3). Assume now that q ≥ 4 is even. Then by [17, Theorem 1.1]
again, H ∈ C3(S)∪C8(S) and hence by [13] we obtain that H ∼= Ω−4 (q)·2 ∼= L2(q2)·2.
This is case (5) in the lemma.

(viii) The pair (S,H) appears in Table 1. For these cases, the conjugacy class
of p-semisimple elements with order given in the column ‘element order’ in Table 1
does not intersect H. �

As we will see shortly, only in case (1) of the previous lemma is the Steinberg
character an m.i character. Cases (2), (4) and (5) can be ruled out easily by using
Lemma 3.1 and [6]. For case (3) we will need more work.

We refer to [13, 5] for the basic definitions and properties of orthogonal groups
and their associated geometries. Let p be an odd prime. Let q be a power of p and
let Fq be a finite field of size q. Let (V,Fq, Q) be a classical orthogonal geometry
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Table 1. Simple groups of Lie type

S H element order S H element order
L2(9) L2(5) 4 S4(7) A7 8
U3(3) L2(7) 8 G2(3) L2(13) 4
U3(5) A7 8 U4(2) S6 9
U5(2) L2(11) 9 S6(2) S8 9
U6(2) M22 9 U4(3) L3(4),A7 8

with dimV = 2n + 1, n ≥ 2 and Q a non-degenerate quadratic form on V. For
x ∈ V −{0}, a one-space with representative x is called a point in V and is denoted
by 〈x〉. The vector x ∈ V − {0} is said to be non-singular provided that Q(x) 6= 0.
Recall that a non-singular point 〈x〉 with representative x ∈ V −{0} is called a plus
point (or minus point) if sgn(x⊥) is + (or −), respectively. (cf. [5, page xi].) In
this situation, we also say that the non-singular point 〈x〉 is of plus or minus type
if 〈x〉 is a plus or minus point, respectively. Note that the group Ω(V ) as defined
in [13, (2.1.14)] is isomorphic to Ω2n+1(q) ∼= O2n+1(q). In this situation, V is called
the natural module for Ω(V ). For ξ ∈ {±}, we define Eξ(V ) to be the set of all
non-singular points of type ξ in V. For τ ∈ Fq, we define

Vτ = {v ∈ V − {0} |Q(v) = τ}.

Lemma 3.5. Assume the set up above. Then the following hold.

(i) Two non-singular points 〈x〉 and 〈y〉 have the same type if and only if
Q(x) ≡ Q(y) (mod (F∗q)2). Indeed, for any non-singular point 〈z〉 with type
ζ, we have

Eζ(V ) = {〈v〉 ⊆ V | Q(v) ≡ Q(z) (mod (F∗q)2)}.

(ii) For ξ ∈ {±}, Ω(V ) acts transitively on Eξ(V ).
(iii) The stabilizers in Ω(V ) of minus points form a unique conjugacy class of

subgroups of Ω(V ).

Proof. As (iii) is a direct consequence of (ii), we only need to prove (i) and (ii).
For (i), assume that Q(x) ≡ Q(y) (mod (F∗q)2). By [13, Proposition 2.5.4(ii)],

we have that 〈x〉 and 〈y〉 are isometric. By Witt’s lemma [13, Proposition 2.1.6],
this isometry extends to an isometry g of V such that 〈x〉g = 〈y〉. As 〈x〉, 〈y〉 are
non-degenerate, we obtain x⊥g = y⊥. It follows that x⊥ and y⊥ are isometric, and
hence sgn(x⊥) = sgn(y⊥), so x and y have the same type. Now assume that x, y
have the same type. By Witt’s lemma and [13, Proposition 2.5.4(i)], there exists an
isometry between x⊥ and y⊥. This isometry can extend to an isometry g of V such
that (x⊥)g = y⊥. Since (x⊥)⊥ = 〈x〉, and (y⊥)⊥ = 〈y〉, we deduce that 〈x〉g = 〈y〉.
Thus xg = µy for some µ ∈ F∗q . Therefore, Q(x) = Q(xg) = Q(µy) = µ2Q(y). The
other statements are obvious. This proves (i).

For (ii), since Q(µx) = µ2Q(x) for x ∈ V, µ ∈ F∗q and Q(xg) = Q(x) for all
x ∈ V, g ∈ Ω(V ), we see that Ω(V ) acts on Eξ(V ). Now fix a non-singular point
〈x〉 of type ξ. Let 〈v〉 be any non-singular point of the same type as that of 〈x〉.
By (i), we have that Q(v) = µ2Q(x) for some µ ∈ F∗q . Let y = µ−1v ∈ 〈v〉. Then
Q(y) = Q(x) =: τ and 〈x〉 = 〈y〉 = 〈v〉. It follows that x, y ∈ Vτ and hence by [13,
Lemma 2.10.5], Ω(V ) acts transitively on Vτ so there exists g ∈ Ω(V ) such that
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xg = y. Therefore, we obtain that 〈x〉g = 〈y〉 = 〈v〉, which means that Ω(V ) is
transitive on Eξ(V ) as wanted. �

Remark 3.6. In case (3) of Lemma 3.4, the maximal subgroup H is exactly the
stabilizer in S ∼= Ω2n+1(q) of a minus point in the natural module for S. By Lemma
3.5(iii), there is only one class of such maximal subgroups in S.

We now consider the following set up. Let n ≥ 2 be even and let q be an odd
prime power. Let S ∼= Ω2n+1(q) with S 6= Ω5(3) and let H be the stabilizer of a
minus point in the natural module for S. We deduce that K := H ′ ∼= Ω−2n(q) ≤
S which is a normal subgroup of index 2 in H. Let S̃ ∼= Spin2n+1(q) and K̃ ∼=
Spin−2n(q). By the assumption on n and q, we deduce that the centers of both S̃

and K̃ are cyclic of order 2. We know that K̃ possesses a cyclic maximal torus T̃ of
order qn + 1 which contains the center of K̃ and then by factoring out the center
Z(K̃), we obtain a maximal torus T of K with order k := (qn + 1)/2. (cf. [9].) Let

g̃ and g be generators for K̃ and K, respectively.
We know that the conjugacy classes of maximal tori of S̃ are parametrized by

pairs of partitions (α, β) of n, that is, α = (α1, α2, · · · , αr) and β = (β1, β2, · · · , βs)
and

∑
αi +

∑
βj = n. The order of the maximal torus parametrized by such pair

(α, β) is given by ∏
αi

(qαi − 1)
∏
βj

(qβj + 1).

The conjugacy classes of the maximal tori of K̃ are also parametrized by pairs of
partitions (α, β) of n, where β has an odd number of parts, and the order of the

maximal torus parametrized by (α, β) is the same as in case S̃. (cf. [16]). It follows

that T̃ is a maximal torus of K̃ parametrized by the pair of partition (∅, (n)). Now

by applying Lemma 3.2 and the order formula of maximal tori of K̃, we can easily
see that the conjugacy class of K̃ containing T̃ is the unique class whose order is
divisible by `2n(q). Since Z(K̃) ≤ T̃ x for all x ∈ K̃, we deduce that the conjugacy
class of T in K is the unique conjugacy class of maximal torus whose order is
divisible by `2n(q). Since g̃ ∈ K̃ ≤ S̃ is semisimple, it lies in some maximal torus of

S̃. Using the order formula of the maximal tori of S̃ given above, we deduce that g̃
must lie in the Coxeter torus of S̃ (see [9]). Comparing the orders, we obtain that T̃

is the Coxeter torus of S̃ so T is also a maximal torus of S. We also know that T̃ has
a regular element ỹ, i.e., CS̃(ỹ) = T̃ which implies that T̃ ≤ CS̃(T̃ ) ≤ CS̃(ỹ) = T̃

and hence CS̃(T̃ ) = T̃ . As a consequence, we obtain that CS(T ) = T which in turn
implies that CS(g) = 〈g〉 and CH(g) = 〈g〉 as g ∈ K ≤ H ≤ S.

Lemma 3.7. Assume the set up above. Then the following hold.

(1) If T ≤ U ≤ S, where U is maximal in S, then U is conjugate to H in S.
(2) If T x ≤ H for some x ∈ S, then T x = Tu for some u ∈ H.
(3) We have NS(T ) ≤ H and CS(g) = 〈g〉 = CH(g).
(4) We have that gS ∩H = gH .

Proof. Let U be any maximal subgroup of S containing T. As n ≥ 2 is even, we
consider the case n = 2 and n ≥ 4 separately. Assume first that n ≥ 4. By [17,
Theorem 1.1], we have that U ∈ C1(S). Since n ≥ 4 and q is odd, we deduce
that `2n(q) exists and divides |T | so it divides |U |. Using the descriptions of the
subgroups in class C1(S) given in Propositions 4.1.6 and 4.1.20 in [13], U must be
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the stabilizer of a minus point so U is conjugate to H in S by Lemma 3.5(iii). The
remaining case can be argued similarly or we can check directly using the list of
maximal subgroups of S given in [12]. This proves (1).

Assume that T x ≤ H for some x ∈ S. It follows that gx ∈ H where x ∈ S,
T = 〈g〉 and the order of g and gx is k. Since q is odd and n is even, we have that
k is always odd. As K EH is of index 2, we deduce that gx ∈ K. As k is prime to
the characteristic of K ∼= Ω−2n(q), we obtain that gx ∈ K is semisimple and hence it
must lie in some maximal torus of K whose order is divisible by `2n(q). Using the
discussion above, the conjugacy class of maximal torus of K containing T is the
only class of maximal torus of K whose order is divisible by `2n(q) so T x = 〈gx〉 is
conjugate to T in K and hence in H. This proves (2).

We next show that NS(T ) ≤ H. Indeed if T ≤ NS(T ) � H, then NS(T ) must
lie in some maximal subgroup of S containing T since NS(T ) 6= S. By (1) we have

T ENS(T ) ≤ Hx for some x ∈ S. It follows that T x
−1 ≤ H and hence T x

−1

= Tu

for some u ∈ H by (2). Thus Tux = T or equivalently ux ∈ NS(T ) ≤ Hx, which
implies that ux = hx, where h ∈ H. Thus we conclude that x = hu−1 ∈ H and so
NS(T ) ≤ Hx = H. This proves the first statement of (3). The other statement has
already been proved in the discussion above.

Finally, since g ∈ H, we obtain that gH ⊆ gS ∩ H. To prove the equality, it
suffices to show that if gx ∈ H, where x ∈ S, then x ∈ H. Suppose that gx ∈ H,
where x ∈ S. Then T x = 〈g〉x = 〈gx〉 ⊆ H and thus by (2) we have that T x = Tu for
some u ∈ H. It follows that xu−1 ∈ NS(T ) and hence by (3) we have NS(T ) ≤ H
so xu−1 ∈ H, which implies that x ∈ H as u ∈ H. The proof is now complete. �

We now classify all simple groups of Lie type in which the Steinberg character
is an m.i character.

Lemma 3.8. Let S be a simple group of Lie type in characteristic p. If H is a
maximal subgroup of S such that mStS = λS , where λ ∈ Irr(H) and m ≥ 1, then

(S,H) ∈ {(L2(5),A4), (L2(7),S4), (L3(2), 7 : 3), (S4(3), 24 : A5)}.

In the first three cases, λ ∈ Irr(H) − {1H} are chosen with λ(1) = 1. In the last
case, λ ∈ Irr(H) is chosen with λ(1) = 3. Furthermore, m = 1 in all cases.

Proof. Assume that mSt = λS , where λ ∈ Irr(H),m ≥ 1 and H is a maximal
subgroup of S. By Lemma 3.1(1) the hypotheses of Lemmas 3.3 and 3.4 are satisfied
so one of the following cases holds.

(i) (S,H) ∈ {(L2(5),A4), (L2(5),S3), (L2(7),S4), (L3(2), 7 : 3), (S4(3), 24 : A5)}.
Apart from the pair (L2(5),S3), the remaining pairs satisfy the conclusion of the
lemma. This is done by using [8].

(ii) (S,H) = (S2n(q),Ω−2n(q)·2) with n ≥ 2 and n, q even. Let K = H ′ ∼= Ω−2n(q).
Then K is a normal subgroup of index 2 in H. Let µ ∈ Irr(K) be an irreducible
constituent of λK . Since λ(1)2 = |H|2 = 2|K|2, we have that λK is not irreducible
so µ(1) = λ(1)/2 since |H : K| = 2, and thus µ(1) = |K|2. It follows that µ ∈ Irr(K)
is of 2-defect zero and then by [6] the only irreducible character of 2-defect zero of
Ω−2n(q) with even q is exactly the Steinberg character, we deduce that µ = StK ,
where K ∼= Ω−2n(q). By [3, Theorem 2], µ extends to µ0 ∈ Irr(H) and hence by
Gallagher’s theorem [10, Corollary 6.17], ψµ0 are all the irreducible constituents
of µH , where ψ ∈ Irr(H/K). Since H/K is abelian of order 2, we obtain that
all irreducible constituents of µH are of the same degree µ(1). However this is a
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contradiction as λ(1) = 2µ(1) and λ is also an irreducible constituent of µH by the
Frobenius reciprocity.

(iii) S = O+
2n(q) with n ≥ 4 even, and H ∼= Ω2n−1(q) when q is odd or H ∼=

S2n−2(q) when q is even. We have

|S : H| = qn−1(qn − 1) gcd(2, q − 1)

gcd(4, qn − 1)
.

It follows that

|S : H|p = qn−1 and |S : H|p′ =
(qn − 1) gcd(2, q − 1)

gcd(4, qn − 1)
.

As q ≥ 3, we can check that |S : H|p′ > |S : H|p, contradicting Lemma 3.1(3).
(iv) (S,H) = (O2n+1(q),Ω−2n(q) · 2) with n ≥ 2 even, q odd and (n, q) 6= (2, 3).

Let K = H ′ ∼= Ω−2n(q). Then K is a normal subgroup of index 2 in H. Since p is
odd, we deduce that λ(1)p = |H|p = |K|p as |H : K| = 2. Let µ ∈ Irr(K) be an
irreducible constituent of λK . We know that λ(1)/µ(1) divides |H : K| = 2 and
thus λ(1)p = µ(1)p = |K|p, which means that µ is an irreducible character of K
with p-defect zero. By applying the same argument as in Case (ii), we deduce that
µ = StK and µ extends to µ0 ∈ Irr(H). By Gallagher’s theorem, ψµ0 are all the
irreducible constituents of µH , where ψ ∈ Irr(H/K). As H/K is abelian and λ is
an irreducible constituent of µH , we obtain that λ = µ0τ for some τ ∈ Irr(H/K).
It follows that λ(1) = µ0(1)τ(1) = µ(1) so λ is an extension of µ to H. In particular
λ(1) = |H|p.

By the discussion before Lemma 3.7, K possesses a cyclic maximal torus T with
generator g whose order k is prime to p so g is semisimple. By Lemma 3.7(3) we
have that CS(g) = CH(g) = 〈g〉 is a p′-group and hence by [4, Theorem 6.5.9] we
have that

StS(g) = ±|CS(g)|p = ±1

and

λ(g) = µ(g) = StK(g) = ±|CK(g)|p = ±1.

By Lemma 3.7(4), we have that gS ∩H = gH and thus by [10, p. 64] we have

λS(g) =
|CS(g)|
|CH(g)|

λ(g) = µ(g) = ±1.

As mStS = λS , we obtain that mStS(g) = λS(g) and hence m = 1. By Lemma
3.1(3), we have that m ≥ |S : H|p′ = (qn − 1)/2. As q ≥ 3 and n ≥ 2, it is obvious
that m > 1, which contradicts our previous claim that m = 1. �

Comparing the previous lemma with [18, Lemma 2.4(2)] and [15, Lemma 6.3],
we can see that the Steinberg character of a simple group of Lie type is m.i if and
only if it is imprimitive; if and only if it is QSI, i.e., it is induced from a character
ϕ of a subgroup U such that U/Ker(ϕ) is solvable.

We are now ready to prove the main result of this section.

Proposition 3.9. Theorem 1.4 holds for simple groups of Lie type.

Proof. Let S be a simple group of Lie type in characteristic p. By way of contra-
diction, suppose that every nonlinear irreducible character of S which is extendible
to Aut(S) is an m.i character. As the Steinberg character of S is extendible to
Aut(S), it is an m.i character. By Lemma 3.8, one of the following cases holds.
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(1) S ∼= L2(5) with p = 5. Since L2(5) ∼= L2(4), the Steinberg character of S with
degree |S|2 = 4 extends to Aut(S) but it is not an m.i character by Lemma 3.8.

(2) S ∼= L2(7) ∼= L3(2) with p = 2 or p = 7. In this case, both irreducible
characters of degrees 7 and 8 are m.i characters. Using [5], the irreducible character
χ labeled by the symbol χ4 with degree 6 of S is extendible to Aut(S). We will
show that χ is not an m.i character. Suppose that χ is an m.i character of S. Then
mχ = λS , where H is a maximal subgroup of S, λ ∈ Irr(H) and m ≥ 1 is an
integer. Let a and b be elements in S with order 2 and 7 respectively. By [5], we
have that χ(a) 6= 0 6= χ(b). Hence aS ∩H 6= ∅ 6= bS ∩H. Thus H possesses elements
of orders 2 and 7 which implies that {2, 7} ⊆ π(H). However by inspecting the list
of maximal subgroups of S in [5], we see that no maximal subgroups of H satisfies
this property. This contradiction shows that χ is not an m.i character.

(3) S ∼= S4(3) with p = 3. In this case, we have that S ∼= S4(3) ∼= U4(2), the
Steinberg character of S with degree |S|2 = 26 is extendible to Aut(S) but it is not
an m.i character by Lemma 3.8. The proof is now complete. �

4. Alternating groups

The main purpose of this section is to prove the following result.

Proposition 4.1. Theorem 1.4 holds for alternating groups of degree at least 7.

Proof. Let An act on the set Ω = {1, 2, · · · , n} of size n, where n ≥ 7. We follow
the argument in [15, Lemma 3.1]. Let χn ∈ Irr(An) be an irreducible character of
An which is extendible to Aut(S) ∼= Sn with degree n − 1. In fact, we can choose
χn = πn − 1, where πn is the permutation character of the natural action of An on
Ω. As n ≥ 7, the 2-point stabilizer An−2 = StabAn

({1, 2}) is doubly transitive on
Ω−{1, 2}. As χn is an m.i character, we have that mχn = λAn for some λ ∈ Irr(U)
and U � An. We have that

(χn)An−2
= χn−2 + 2 · 1An−2

.

By Mackey’s Lemma, we obtain that

mχn−2 + 2m1An−2
=

∑
x∈T

(λxUx∩An−2
)An−2 ,

where T is a representative set of the double cosets of An−2 and U in An. Hence

(λU∩An−2)An−2 = m1χn−2 +m21An−2 ,

where m1,m2 ≥ 1. By replacing U with its conjugate, we can assume that m2 > m1

so An−2 ≤ U as (λU∩An−2
)An−2 takes only positive values. As U is maximal in

An and An−2 ≤ U, we deduce that U ∼= An−1 or U ∼= Sn−2. Assume that the
latter case holds. Then the conjugacy class of An with representative g ∈ An,
where g = (1, 2, · · · , n) or (1, 2 · · · , n − 3)(n − 2, n − 1, n) depending on whether
n is odd or even, respectively, will intersect U as χn(g) 6= 0, which is impossible.
Thus U ∼= An−1. As mχn = λAn and |An : U | = n, by Lemma 2.2(ii), we have
that m(n − 1) = nλ(1) and |An : U | = n ≥ m2. As m(n − 1) = nλ(1) and
gcd(n, n − 1) = 1, we deduce that n | m, hence n ≤ m, which is impossible as
n ≥ m2 and n ≥ 7. �
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Table 2. Sporadic simple groups and the Tits group

S primes χ χ(1) possible H conjugacy class
M11 11 χ9 45 L2(11) 8A
M12 11 χ7 54 L2(11),M11 10A
J1 11, 19 χ2 56 −
M22 7, 11 χ3 45 −
J2 5, 7 χ6 36 −
M23 7, 23 χ2 22 −
HS 7, 11 χ24 3200 M22 15A
J3 17, 19 χ6 324 −
M24 23 χ22 3520 L2(23),M23 21A
McL 7, 11 χ12 4500 M22 12A
He 7, 17 χ12 1920 −
Ru 13, 29 χ2 378 −
Suz 11, 13 χ43 248832 −
O’N 19, 31 χ23 175616 −
Co3 7, 23 χ5 275 M23 24A
Co2 7, 23 χ4 275 M23 30A
Fi22 11, 13 χ54 1360800 −
HN 11, 19 χ44 2985984 −
Ly 37, 67 χ2 2480 −
Th 19, 31 χ4 27000 −
Fi23 17, 23 χ6 30888 −
Co1 13, 23 χ40 21049875 −
J4 37, 43 χ15 32307363 −
Fi′24 23, 29 χ6 1603525 −
B 31, 47 χ119 2642676197359616 −
M 59, 71 χ16 8980616927734375 −
2F4(2)′ 5, 13 χ20 1728 L2(25) 10A

5. Sporadic simple groups and the Tits group

In this section, we will prove the following result.

Proposition 5.1. Theorem 1.4 holds for sporadic simple groups and the Tits group.

Proof. Let S be a simple sporadic group or the Tits group. All information that
we need for the proof of Proposition 5.1 is presented in Table 2. For each sporadic
simple group or the Tits group S, let πS be the set of primes in the second column of
Table 2. In the fifth column, we list all the possibilities for the maximal subgroups
H of S such that πS ⊆ π(H). This is taken from [14, Table 10.6] for sporadic
simple groups and from [14, Table 10.5] for the Tits group. Let χ ∈ Irr(S) be the
irreducible character of S labeled by the symbol in the third column of Table 2.
The corresponding degree of χ is listed in the next column. The character χ is
chosen to satisfy the following properties.

(i) χ is extendible to Aut(S);
(ii) For each prime p ∈ πS and any element gp ∈ S with order p, we have that

χ(gp) 6= 0;
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(iii) For any element x ∈ S lying in the conjugacy class in the last column of
Table 2, we also have that χ(x) 6= 0.

We now show that χ is not an m.i character. By way of contradiction, assume
that χ is an m.i character of S. Then there exist a maximal subgroup H ≤ S and
λ ∈ Irr(H) such that mχ = λS for some nonnegative integer m. For each prime
p ∈ πS and gp ∈ S, by (ii) we have χ(gp) 6= 0, so λS(gp) = mχ(gp) 6= 0, thus
gSp ∩H 6= ∅. In particular H possesses an element of order p and thus πS ⊆ π(H).
The possibilities for H are given Table 2. In these cases, with the same argument,
we obtain that xS ∩H 6= ∅ as χ(x) 6= 0 by (iii) and thus H has an element of order
equal to that of x. However we can see that H has no elements with such orders by
checking [5] directly. �

6. Proofs of the main results

Proof of Theorem 1.4. This follows from Propositions 3.9, 4.1, 5.1 and the
classification of finite simple groups. �

It would be interesting if one could classify all m.i characters of simple groups.

Proof of Theorem 1.1. Assume that NEG and that G is an MI-group relative to
N. We show that N is solvable. Let NEG be a counterexample such that |G|+ |N |
is minimal. It follows that N is nonsolvable.

We show that N is the unique minimal normal subgroup of G. We first show
that N is a minimal normal subgroup of G. Suppose not. Let K ≤ N be a minimal
normal subgroup of G. Then K � N. By Lemma 2.1(ii), we obtain that G is an MI-
group relative to K. Since |G|+ |K| < |G|+ |N |, by induction hypotheses we deduce
that K is solvable and hence N/K is a nonsolvable normal subgroup of G/K. Now
by Lemma 2.1(i), we have that G/K is an MI-group relative to N/K. Thus by
induction hypothesis again, we deduce that N/K is solvable. Combining with the
previous claim, we obtain that N is solvable, which is a contradiction. We have
proved that N is a minimal normal subgroup of G. Let C = CG(N). In order to show
that N is the unique minimal normal subgroup of G, it suffices to show that C is
trivial. Observe that CEG and thus by Lemma 2.1(i), we have that G/C is an MI-
group relative to NC/C. As N is nonsolvable and is a minimal normal subgroup of
G, we have that N is isomorphic to a direct product of some nonabelian isomorphic
simple groups so N ∩ C = 1. Therefore, NC/C ∼= N/N ∩ C ∼= N is nonsolvable.
If C is nontrivial, then since G/C is an MI-group relative to NC/C, by induction
hypothesis we deduce that NC/C ∼= N is solvable, which is impossible. Thus C is
trivial. Hence N is the unique minimal normal subgroup of G as required.

Let R be a nonabelian simple group such that N = R1 × R2 × · · · × Rk, where
Ri ∼= R for all i. By Lemma 2.4, every Aut(R)-invariant nonlinear irreducible
character of R is an m.i character of R. Now Theorem 1.4 provides a contradiction.
The proof is now complete. �

Proof of Corollary 1.3. Let L = 〈HG〉 be the normal closure of H in G. Then
H ≤ L E G. By definition, L is the smallest normal subgroup of G containing H.
We show that L is solvable. The remaining statement is clear.

We first assume that L = G. We show that G is an MI-group and then the result
follows from Corollary 1.2. Let χ ∈ Irr(G) be any nonlinear irreducible character
of G. If 1H is the only irreducible constituent of χH , then obviously χH = χ(1)1H
and hence H ≤ Ker(χ) E G. Since χ is a nonlinear irreducible character of G,
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we deduce that Ker(χ) is a proper normal subgroup of G containing H, which is
a contradiction as 〈HG〉 = G. It follows that χH has an irreducible constituent
λ ∈ Irr(H) with λ 6= 1H . By the hypotheses, we know that λG is a multiple of
some irreducible character of G. Since (λG, χ)G = (λ, χH) 6= 0 by the Frobenius
reciprocity, we must have that λG = mχ for some nonnegative integer m. Thus χ
is an m.i character. Hence G is an MI-group as wanted.

Now assume that L 6= G. We claim that G is an MI-group relative to L. Let
χ ∈ Irr(G|L) and let θ be any irreducible constituent of χ upon restriction to L.
Since L � Ker(χ), we can choose θ 6= 1L. If θ is not G-invariant, then by the
Clifford theory, we know that χ = ψG for some ψ ∈ Irr(IG(θ)|θ) and hence χ is
an m.i character. Therefore, we can assume that θ is G-invariant. It follows that
Ker(θ) ≤ L is a proper normal subgroup of L since θ 6= 1L. As in the previous case,
if 1H is the only irreducible constituent of θH , then H ≤ Ker(θ) � LEG, which is
a contradiction as L is the smallest normal subgroup of G containing H. Hence we
conclude that θH possesses an irreducible constituent λ ∈ Irr(H) with λ 6= 1H . By
the transitivity of induction, we obtain that χ is an irreducible constituent of λG,
and so by the hypotheses we deduce that λG = mχ for some m. Hence χ is an m.i
character. Thus G is an MI-group relative to L. Now the result follows from the
main theorem. �
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