PRIME DIVISORS OF IRREDUCIBLE CHARACTER DEGREES

HUNG P. TONG-VIET

Abstract. Let G be a finite group. We denote by $\rho(G)$ the set of primes which divide some character degrees of G and by $\sigma(G)$ the largest number of distinct primes which divide a single character degree of G. We show that $|\rho(G)| \leq 2\sigma(G) + 1$ when G is an almost simple group. For arbitrary finite groups G, we show that $|\rho(G)| \leq 2\sigma(G) + 1$ provided that $\sigma(G) \leq 2$.

1. Introduction

Throughout this paper, all groups are finite and all characters are complex characters. The set of all complex irreducible characters of G is denoted by $\text{Irr}(G)$ and we let $\text{cd}(G)$ be the set of all complex irreducible character degrees of G. We define $\rho(G)$ to be the set of primes which divide some character degree of G. For $\chi \in \text{Irr}(G)$, let $\pi(\chi)$ be the set of all prime divisors of $\chi(1)$ and let $\sigma(\chi) = |\pi(\chi)|$. Moreover, $\sigma(G)$ is defined to be the maximum value of $\sigma(\chi)$ when χ runs over the set $\text{Irr}(G)$. Huppert’s $\rho - \sigma$ Conjecture proposed by B. Huppert in [H] states that if G is a solvable group, then $|\rho(G)| \leq 2\sigma(G)$; and if G is an arbitrary group, then $|\rho(G)| \leq 3\sigma(G)$. For solvable groups, this conjecture has been verified by Manz [Man1] and Gluck [G] when $\sigma(G) = 1$ and 2, respectively; and in general, it is proved by Manz and Wolf [MW] that $|\rho(G)| \leq 3\sigma(G) + 2$. For arbitrary groups, Manz [Man2] showed that $|\rho(G)| = 3$ if G is nonsolvable and $\sigma(G) = 1$. Recently, it has been proved by Casolo and Dolfi [CD] that $|\rho(G)| \leq 7\sigma(G)$ for any arbitrary groups G. In [MW], Manz and Wolf proposed that for any group G,

\[|\rho(G)| \leq 2\sigma(G) + 1.\]

We call this new conjecture the Strengthened Huppert’s $\rho - \sigma$ conjecture. Obviously, this new conjecture is stronger than the original one. In this paper, we first improve the result due to Alvis and Barry in [AB] by proving the following.

Theorem A. Let G be an almost simple group. Then $|\rho(G)| \leq 2\sigma(G)$ unless $G \cong \text{PSL}_2(2^f)$ with $f \geq 2$ and $|\pi(2^f - 1)| = |\pi(2^f + 1)|$. For the exceptions, we have $|\rho(G)| = 2\sigma(G) + 1$.

Date: October 12, 2015.

2000 Mathematics Subject Classification. Primary 20C15.

Key words and phrases. character degrees; Huppert’s $\rho - \sigma$ conjecture.
Theorem B. Let G be a finite group. If $\sigma(G) \leq 2$, then $|\rho(G)| \leq 2\sigma(G) + 1$.

Notice that Theorem B is also a generalization to [1], Theorem A.

Notation. For a positive integer n, we denote the set of all prime divisors of n by $\pi(n)$. If G is a group, then we write $\pi(G)$ instead of $\pi(|G|)$ for the set of all prime divisors of the order of G. If $N \leq G$ and $\theta \in \text{Irr}(N)$, then the inertia group of θ in G is denoted by $I_G(\theta)$. We write $\text{Irr}(G|\theta)$ for the set of all irreducible constituents of θ^G. Moreover, if $\chi \in \text{Irr}(G)$, then $\text{Irr}(\chi_N)$ is the set of all irreducible constituents of χ when restricted to N. Recall that a group G is said to be an almost simple group with socle S if there exists a nonabelian simple group S such that $S \leq G \leq \text{Aut}(S)$. The greatest common divisor of two integers a and b is $\gcd(a, b)$. Denote by $\Phi_k := \Phi_k(q)$ the value of the kth cyclotomic polynomial evaluated at q. Other notation is standard.

2. Proof of Theorem A

If G is an almost simple group, then G has no normal abelian Sylow subgroup and so by Ito-Michler’s Theorem [Mich, Theorem 5.4], $\rho(G) = \pi(G)$. This fact will be used without any further reference.

Lemma 2.1. Let S be a sporadic simple group, the Tits group or an alternating group of degree at least 7. If G is an almost simple group with socle S, then

$$|\pi(G)| = |\pi(S)| \leq 2\sigma(G).$$

Proof. Observe first that if S is one of the simple groups in the lemma, and G is any almost simple group with socle S, then $\pi(G) = \pi(S)$. Since $S \leq G$, we see that $\sigma(S) \leq \sigma(G)$. Thus it suffices to show that $|\pi(S)| \leq 2\sigma(S)$. By using [Atlas], we can easily check that $|\pi(S)| \leq 2\sigma(S)$ when S is a sporadic simple group, the Tits group or an alternating group of degree n with $7 \leq n \leq 14$. Finally, if $S \cong A_n$ with $n \geq 15$, then the result in [BW] yields that $|\pi(S)| = \sigma(S)$. This completes the proof. □

For $\epsilon = \pm$, we use the convention that $\text{PSL}_n^\epsilon(q)$ is $\text{PSL}_n(q)$ if $\epsilon = +$ and $\text{PSU}_n(q)$ if $\epsilon = -$. Let $q \geq 2$ and $n \geq 3$ be integers with $(n, q) \neq (6, 2)$. A prime ℓ is called a primitive prime divisor of $q^n - 1$ if $\ell \mid q^n - 1$ but $\ell \nmid q^m - 1$ for any $m < n$. By Zsigmondy’s Theorem [Z], the primitive prime divisors of $q^n - 1$ always exist. We denote by $\ell_n(q)$ the smallest primitive prime divisor of $q^n - 1$. In Table [1] which is taken from [Mal], we give the orders of two maximal tori T_i and the corresponding two primitive prime divisors ℓ_i, for $i = 1, 2$, of classical groups.
We consider the following cases.

and

\[
\chi \text{ characters}
\]

So, we can assume that \(q > 2 \). The cases when \(q = 3 \) or 4 can be checked directly using [Atlas]. So, we can assume that \(q \geq 5 \). By [S5], \(S \) possesses irreducible characters \(\chi_i, i = 1, 2, \) with degree

\[
\chi_1(1) = (q - c_1)^2(q + c_1) \quad \text{and} \quad \chi_2(1) = q(q^2 + \epsilon q + 1).
\]
Let \(d = \gcd(3, q - \epsilon 1) \). Then
\[
|S| = \frac{1}{d} q^3 (q^2 - 1) (q^3 - \epsilon 1) = \frac{1}{d} q^3 (q - \epsilon 1)^2 (q + \epsilon 1)(q^2 + \epsilon q + 1)
\]
and so
\[
\pi(S) = \pi(\chi_1) \cup \pi(\chi_2).
\]
Therefore, \(|\pi(S)| \leq 2\sigma(S)\) as wanted.

Case 3: \(S \cong \text{PSp}_4(q) \) with \(q = p^f > 2 \).

By [E, S], \(S \) has two irreducible characters \(\chi_i, i = 1, 2 \), with degree \(\Phi_1^2 \Phi_2^2 \) and \(q\Phi_1 \Phi_4 \), respectively. Since
\[
|S| = \frac{1}{d} q^4 \Phi_2^2 \Phi_4
\]
where \(d = \gcd(2, q - 1) \), we deduce that
\[
\pi(S) = \pi(\chi_1) \cup \pi(\chi_2),
\]
and thus \(|\pi(S)| \leq 2\sigma(S)\).

Case 4: \(S \) is one of the remaining simple groups in the list \(\mathcal{C} \).

Using [Atlas], it is routine to check that \(|\pi(S)| \leq 2\sigma(S)\) in all these cases.

Case 5: \(S \) is not in the list \(\mathcal{C} \).

We consider the following setup. Let \(\mathcal{G} \) be a simple simply connected algebraic group defined over a field of size \(q \) in characteristic \(p \) and let \(F \) be a Frobenius map on \(\mathcal{G} \) such that \(S \cong L/Z \), where \(L := \mathcal{G}^F \) and \(Z := Z(L) \). Let the pair \((\mathcal{G}^*, F^*)\) be dual to \((\mathcal{G}, F)\) and let \(L^* := \mathcal{G}^{F^*} \). By Lusztig theory, the irreducible characters of \(\mathcal{G}^F \) are partitioned into rational series \(\mathcal{E}(\mathcal{G}^F, (s)) \) which are indexed by \((\mathcal{G}^{F^*})\)-conjugacy classes \((s) \) of semisimple elements \(s \in \mathcal{G}^{F^*} \). Furthermore, if \(\gcd(|s|, |Z|) = 1 \), then every \(\chi \in \mathcal{E}(\mathcal{G}^F, (s_i)) \) is trivial at \(Z \) and thus \(\chi \in \text{Irr}(S) = \text{Irr}(L/Z) \). (See [MT] p. 349). Notice also that \(\chi(1) \) is divisible by \(|L^*: C_{L^*}(s)|_{p'} \).

For simple classical groups of Lie type, the restriction on \(S \) guarantees that both primitive prime divisors \(\ell_i \) in Table 1 exist. Let \(s_i \in \mathcal{G}^{F^*} \) with \(|s_i| = \ell_i, i = 1, 2 \). Then \(C_{L^*}(s_i) = T_i \) for \(i = 1, 2 \), where \(T_i \) are maximal tori of \(L^* \). Similarly, for each simple exceptional group of Lie type \(S \), by [MT] Lemma 2.3 one can find two semisimple elements \(s_i \in \mathcal{G}^{F^*} \) with \(|s_i| = \ell_i, i = 1, 2 \). In both cases, we have that \((\ell_i, |Z|) = 1 \) for \(i = 1, 2 \) and if \(a := \gcd(|C_{L^*}(s_1)|, |C_{L^*}(s_2)|) \), then either \(a = 1 \) or if a prime \(r \) divides \(a \), then \(r \) also divides \(|L^*: C_{L^*}(s)|_{p'} \) for some \(i \). Let \(\chi_i \in \mathcal{E}(\mathcal{G}^F, (s_i)), i = 1, 2 \) such that \(\chi_i(1) = |L^*: C_{L^*}(s_i)|_{p'} \). Then \(\chi_i \in \text{Irr}(S) \) for \(i = 1, 2 \) and
\[
\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2).
\]
Notice that p is relatively prime to both $\chi_i(1)$ for $i = 1, 2$. So
\[
|\pi(S)| = |\{p\} \cup \pi(\chi_1) \cup \pi(\chi_2)|
= 1 + |\pi(\chi_1)| + |\pi(\chi_2)| - |\pi(\chi_1) \cap \pi(\chi_2)|
= \sigma(\chi_1) + \sigma(\chi_2) - (|\pi(\chi_1) \cap \pi(\chi_2)| - 1)
\leq 2\sigma(S) - (|\pi(\chi_1) \cap \pi(\chi_2)| - 1).
\]
If we can show that $|\pi(\chi_1) \cap \pi(\chi_2)| \geq 1$, then clearly $|\pi(S)| \leq 2\sigma(S)$ and we are done. By way of contradiction, assume that $\pi(\chi_1) \cap \pi(\chi_2)$ is empty. Then $\gcd(\chi_1(1), \chi_2(1)) = 1$ and so
\[
\gcd(|L^*: C_{L^*}(s_1)|_{p'}, |L^*: C_{L^*}(s_2)|_{p'}) = 1.
\]
It follows that $|L^*|_{p'}$ must divide $|C_{L^*}(s_1)|_{p'} \cdot |C_{L^*}(s_2)|_{p'}$. However, we can check by using [MT, Lemma 2.3] and Table 1 that this is not the case. The proof is now complete. \qed

We now prove Theorem A which we restate here.

Theorem 2.3. Let G be an almost simple group. Then $|\rho(G)| \leq 2\sigma(G)$ unless $G \cong \text{PSL}_2(2^f)$ with $|\pi(2^f - 1)| = |\pi(2^f + 1)|$. For the exceptions, we have $|\rho(G)| = 2\sigma(G) + 1$.

Proof. Let G be an almost simple group with simple socle S. Since $S \leq G$, we obtain that $\sigma(S) \leq \sigma(G)$.

Case 1: $S \cong \text{PSL}_2(q)$ with $q = 2^f \geq 4$.

It is well known that $|S| = q(q^2 - 1)$, $\gcd(2^f - 1, 2^f + 1) = 1$ and
\[
\text{cd}(S) = \{1, q - 1, q, q + 1\}.
\]
If $|\pi(q - 1)| = |\pi(q + 1)|$, then
\[
\pi(S) = \{2\} \cup \pi(q - 1) \cup \pi(q + 1)
\]
and thus $|\pi(S)| = 2\sigma(S) + 1$ as $\sigma(S) = |\pi(2^f \pm 1)|$. Assume that $|\pi(q - 1)| \neq |\pi(q + 1)|$. Then $|\pi(2^f + \delta)| > |\pi(2^f - \delta)|$ for some $\delta \in \{\pm 1\}$. Hence, $\sigma(S) = |\pi(2^f + \delta)|$ and thus
\[
|\pi(S)| = |\{2\} \cup \pi(2^f - \delta) \cup \pi(2^f + \delta)| = 1 + |\pi(2^f - \delta)| + |\pi(2^f + \delta)|.
\]
Since $|\pi(2^f + \delta)| \geq |\pi(2^f - \delta)| + 1$, we obtain that
\[
|\rho(G)| \leq 2|\pi(2^f + \delta)| \leq 2\sigma(G).
\]
Thus the result holds when $G = S$. Assume now that $|G : S|$ is nontrivial. We know that $\text{Aut}(S) = S \cdot \langle \varphi \rangle$, where φ is a field automorphism of S of order f. Thus $G = S \cdot \langle \psi \rangle$, with $\psi \in \langle \varphi \rangle$. If $f = 2$, then $G \cong A_5 \cdot 2$ and obviously $|\pi(G)| = 2\sigma(G)$. Hence we can assume that $f > 2$. Clearly, if $f \equiv 2 \pmod{4}$ and $G = S \cdot \langle \varphi \rangle$, then
\[|G : S| > 2. \] So by [W] Theorem A, \(G \) has two irreducible characters \(\chi_i \in \text{Irr}(G) \), \(i = 1, 2 \), with \(\chi_1(1) = |G : S|(q - 1) \) and \(\chi_2(1) = |G : S|(q + 1) \). Obviously
\[
\pi(G) = \{2\} \cup \pi(\chi_1) \cup \pi(\chi_2)
\]
and
\[
\pi(\chi_1) \cap \pi(\chi_2) = \pi(|G : S|) \neq \emptyset.
\]
If \(|G : S| \) is even, then
\[
|\rho(G)| = |\pi(\chi_1) \cup \pi(\chi_2)| \leq |\pi(\chi_1)| + |\pi(\chi_2)| \leq 2\sigma(G).
\]
If \(|G : S| \) is odd, then
\[
|\rho(G)| = |\{2\} \cup \pi(\chi_1) \cup \pi(\chi_2)|
= 1 + |\pi(\chi_1)| + |\pi(\chi_2)| - |\pi(\chi_1) \cap \pi(\chi_2)|
\leq \sigma(\chi_1) + \sigma(\chi_2) - (|\pi(|G : S|)| - 1)
\leq 2\sigma(G).
\]

Case 2: \(S \) is a sporadic simple group, the Tits group or an alternating group of degree at least 7. By Lemma 2.1, we obtain that \(|\rho(G)| \leq 2\sigma(G) \).

Case 3: \(S \) is a finite simple group of Lie type in characteristic \(p \) and \(S \) is not the Tits groups nor \(\text{PSL}_2(2^f) \) with \(f \geq 2 \).

Subcase 3a: \(\pi(\gamma) = \pi(S) \).

By Lemma 2.2, we have that \(|\pi(S)| \leq 2\sigma(S) \). Thus
\[
|\rho(G)| = |\pi(S)| \leq 2\sigma(S) \leq 2\sigma(G).
\]

Subcase 3b: \(\pi := \pi(G) - \pi(S) \) is nonempty.

Let \(A \) be the subgroup of the group of coprime outer automorphisms of \(S \) induced by the action of \(G \) on \(S \). By [MT] Lemma 2.10, \(A \) is cyclic and central in \(\text{Out}(S) \). Moreover, \(A \) is generated by a fixed field automorphism \(\gamma \in \text{Out}(S) \). It follows that the group \(S \cdot A \) is normal in \(G \) and \(\pi(S \cdot A) = \pi(G) \). Thus we can assume that \(G = S \cdot A \) with \(A = \langle \gamma \rangle \) and \(\gamma \) a field automorphism of \(S \). Furthermore, \(\pi(\gamma) = \pi \). Replacing \(A \) by a normal subgroup if necessary, we can also assume that \(|A| = |\gamma| \) is the product of all distinct primes in \(\pi \).

As in the proof of Lemma 2.2, let \(\mathcal{G} \) be a simple simply connected algebraic group defined over a field of size \(q = p^f \) in characteristic \(p \) and let \(F \) be a Frobenius map of \(\mathcal{G} \) such that \(S \cong L/Z \), where \(L := \mathcal{G}^F \) and \(Z := Z(L) \). Let the pair \((\mathcal{G}, F^*) \) be dual to \((\mathcal{G}, F) \) and let \(L^* := \mathcal{G}^{*F^*} \). As \(\pi \subseteq \pi(F) \), where \(\pi = \pi(G) - \pi(S) \), it is easy to check that both the primitive prime divisors in [MT] Lemmas 2.3, 2.4 exist and thus
one can find two semisimple elements $s_i \in G^{s_F}$ with $|s_i| = \ell_i$ such that $(\ell_i, |Z|) = 1$ for $i = 1, 2$. Arguing as in the proof of Lemma \ref{lem:2.2}, we obtain that
\[
\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2),
\]
where $\chi_i \in \mathcal{E}(G, (s_i))$ such that $\chi_i(1) = |L^*: C_{L^*}(s_i)|_p$ and χ_i can be considered as characters of S, for $i = 1, 2$.

We next claim that the inertia group for both $\chi_i, i = 1, 2$ in G is exactly S. It suffices to show that no field automorphism of S of prime order can fix χ_i for $i = 1, 2$. Let τ be a field automorphism of S of prime order s. We can extend τ to an automorphism of G^s and G^{s_F} which we also denote by τ. Notice that $C_{G^s}(\tau)$ is a finite group of Lie type of the same type as that of G^s but defined over a field of size $q^{1/s}$. Now it is straightforward to check that both $\ell_i, i = 1, 2$, are relatively prime to $|C_{G^s}(\tau)|$. Hence G^{s_F}-conjugacy classes (s_i) of s_i in G^{s_F} are not τ-invariant for $i = 1, 2$. (See \cite[Proposition 2.6]{MT}.) Then s_i and s_1 are not G^{s_F}-conjugate for $i = 1, 2$, and thus $\chi_i \in \mathcal{E}(G, (s_i)), i = 1, 2$ are not τ-invariant. (See \cite[Theorem 2.7]{MT}. Therefore, we obtain that $\chi_i^G \in \text{Irr}(G)$ for $i = 1, 2$, hence $\chi_i^G(1) = |G:S|\chi_i(1) \in \text{cd}(G)$. Since
\[
\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2)
\]
we obtain that
\[
\pi(G) = \{p\} \cup \pi(|G:S|\chi_1(1)) \cup \pi(|G:S|\chi_2(1)) = \{p\} \cup \pi(G_1^G) \cup \pi(G_2^G).
\]
Moreover, $p \nmid |G:S|\chi_i(1) = \chi_i^G(1)$ for $i = 1, 2$, and
\[
|\pi(G_1^G) \cap \pi(G_2^G)| \geq 1.
\]
Therefore,
\[
|\pi(G)| = 1 + \sigma(\chi_1^G) + \sigma(\chi_2^G) - |\pi(G_1^G) \cap \pi(G_2^G)| \\
\leq 2\sigma(G) - (|\pi(G_1^G) \cap \pi(G_2^G)| - 1) \\
\leq 2\sigma(G).
\]
The proof is now complete. \hfill \square

The next results will be needed in the proof of Theorem B.

\begin{lemma}
Let S be a nonabelian simple group. If $\sigma(S) \leq 2$, then S is one of the following groups.
\begin{enumerate}
\item $S \cong \text{PSL}_2(2^f)$ with $|\pi(2^f \pm 1)| \leq 2$ and so $|\pi(S)| \leq 5$.
\item $S \cong \text{PSL}_2(q)$ with $q > 5$ odd and $|\pi(q \pm 1)| \leq 2$ and so $|\pi(S)| \leq 4$.
\item $S \in \{M_{11}, A_7, 2B_2(8), 2B_2(32), \text{PSL}_2^+(3), \text{PSL}_3^+(4), \text{PSL}_3(8)\}$ and $|\pi(S)| = 4$.
\end{enumerate}
\end{lemma}

\begin{proof}
As S is a nonabelian simple group, we have that $|\pi(S)| \geq 3$. If $S \cong \text{PSL}_2(q)$ with $q \geq 4$, then the lemma follows easily as the character degree set of S is known. Now assume that $S \not\cong \text{PSL}_2(q)$. Then Lemmas \ref{lem:2.2} and \ref{lem:2.1} imply that $|\pi(S)| \leq 2\sigma(S)$.
\end{proof}
that

By Theorem A and thus $4 \leq |\pi(G)| = |\pi(S)|$.

By checking the list of nonabelian simple groups with at most four prime divisors in [HL], we deduce that only those nonabelian simple groups appearing in (3) above satisfy the hypotheses of the lemma.

Lemma 2.5. Let G be an almost simple group with simple socle S. If $\sigma(G) \leq 2$, then $\pi(G) = |\pi(S)|$, where S is one of the simple groups in Lemma 2.4.

Proof. Since $\sigma(S) \leq \sigma(G) \leq 2$, we deduce that S is isomorphic to one of the simple groups in the conclusion of Lemma 2.4. If $|\pi(S)| = 3$, then S is one of the simple groups in [HL] Table 1 and we can check that $\pi(G) = |\pi(S)|$ in these cases. Thus we assume that $|\pi(S)| \geq 4$. Now if $G = S$, then we have nothing to prove. So, we assume that $G \neq S$. In particular, $G \not\cong \text{PSL}_2(2^f)$ with $f \geq 2$. Then $|\pi(G)| \leq 2\sigma(G) \leq 4$ by Theorem A and thus $4 \leq |\pi(S)| \leq |\pi(G)| \leq 4$, which forces $|\pi(S)| = |\pi(G)|$ and hence $\pi(G) = |\pi(S)|$ as wanted.

\[\square \]

3. **Proof of Theorem B**

The following two lemmas are obvious.

Lemma 3.1. Let A and B be groups such that $|\rho(A)| \geq 3$ and $|\rho(B)| \geq 3$. If $\sigma(A \times B) \leq 2$, then $\sigma(A) = 1 = \sigma(B)$.

Lemma 3.2. Let N be a normal subgroup of a group G. If $\rho(G/N) = |\pi(G/N)|$, then $3 \leq \rho(G) - \rho(G/N) \leq \rho(N)$.

Recall that the solvable radical of a group G is the largest normal solvable subgroup of G.

Lemma 3.3. Let G be a nonsolvable group and let N be the solvable radical of G. Suppose that $\sigma(G) \leq 2$ and $|\rho(G)| \geq 5$. Then G/N is an almost simple group.

Proof. We first claim that if M/N is a chief factor of G, then M/N is a nonabelian simple group.

Let M be a normal subgroup of G such that M/N is a chief factor of G. Since N is the largest normal solvable subgroup of G, we deduce that M/N is nonsolvable so that $M/N \cong S^k$ for some integer $k \geq 1$ and some nonabelian simple group S. Let $C/N = C_{G/N}(M/N)$. Then G/C embeds into $\text{Aut}(S^k)$.

Assume first that $k \geq 3$. Since $|\rho(S)| = |\pi(S)| \geq 3$, there exist three distinct prime divisors $r_i, 1 \leq i \leq 3$, and three characters $\psi_i \in \text{Irr}(S)$ for $1 \leq i \leq 3$ with $r_i | \psi_i(1)$. Let

$$\varphi = \psi_1 \times \psi_2 \times \psi_3 \times 1 \times \cdots \times 1 \in \text{Irr}(S^k).$$

Then $\sigma(\varphi) \geq 3$, which is a contradiction since

$$\sigma(S^k) = \sigma(M/N) \leq \sigma(M) \leq \sigma(G) \leq 2.$$
Thus $k \leq 2$.

Now assume that $k = 2$. Let $B/C = (G/C) \cap \text{Aut}(S)^2$. Then G/B is a nontrivial subgroup of the symmetric group of degree 2 and thus $|G : B| = 2$. Since $S^2 \cong MC/C \leq B/C \leq G/C$ and $\sigma(G) \leq 2$, we deduce that $\sigma(S^2) \leq 2$ and thus $\sigma(S) = 1$ by Lemma 3.1. By [Man2, Satz 8], we know that S is isomorphic to either PSL$_2$(4) or PSL$_2$(8). In both cases, we obtain that $\pi(\text{Aut}(S)) = \pi(S)$, hence $\pi(B/C) = \pi(S)$. Moreover, as $|G : B| = 2$, we deduce that $\pi(G/C) = \pi(S)$. As G/C has no nontrivial normal abelian Sylow subgroups, Ito-Michler’s Theorem yields that $\rho(G/C) = \pi(G/C) = \pi(S)$. Since $|\pi(G/C)| = |\pi(S)| = 3$ and $|\rho(G)| \geq 5$, there exists $r \in \rho(G) - \pi(G/C)$. Then $r > 2$ and $r \in \rho(C)$ by Lemma 3.2. Let $\theta \in \text{Irr}(C)$ such that $r | \theta(1)$. Let L be a normal subgroup of MC such that $L/C \cong S$. Notice that $MC/C \cong S^2$. By applying [1] Lemma 4.2, θ extends to $\theta_0 \in \text{Irr}(L)$. By Gallagher’s Theorem [1] Corollary 6.17, $\theta_0 \mu \in \text{Irr}(L)$ for all $\mu \in \text{Irr}(L/C)$. Let $\mu_0 \in \text{Irr}(L/C)$ with $2 \mid \mu_0(1)$ and let $\varphi = \theta_0 \mu_0 \in \text{Irr}(L)$. Then $\pi(\varphi(1)) = \{2, r\}$ with $r > 2$. As $MC/L \cong S$, we can apply [1] Lemma 4.2 again to obtain that φ extends to $\varphi_0 \in \text{Irr}(MC)$ and then by applying Gallagher’s Theorem, $\varphi_0 \mu \in \text{Irr}(MC)$ for all $\mu \in \text{Irr}(MC/L)$. Clearly, $MC/L \cong S$ has an irreducible character $\tau \in \text{Irr}(MC/L)$ with $s \mid \tau(1)$, where $s \notin \{2, r\}$. We now have that $\varphi_0 \tau \in \text{Irr}(MC)$. But then this is a contradiction as $\pi(\varphi_0(1)\tau(1)) = \{2, s, r\}$. This contradiction shows that $k = 1$ as wanted.

Let M/N be a chief factor of G and let $C/N = \text{C}_G(N)(M/N)$. We claim that $C = N$ and thus G/N is an almost simple group as required. By the claim above, we know that $M/N \cong S$ for some nonabelian simple group S. Hence, G/C is an almost simple group with socle $MC/C \cong M/N$. Suppose by contradiction that $C \neq N$. Now let L/N be a chief factor of G with $N \leq L \leq C$. By the claim above, we deduce that L/N is isomorphic to some nonabelian simple group. In particular, $|\rho(C/N)| \geq |\pi(L/N)| \geq 3$. We have that $MC/N \cong C/N \times M/N$. Since $\sigma(MC/N) \leq \sigma(MC) \leq \sigma(G) \leq 2$, we deduce that $\sigma(C/N \times M/N) \leq 2$ and thus by Lemma 3.1, $\sigma(C/N) = 1 = \sigma(M/N)$. By [Man2], we have $C/N \cong T \times A$, where A is abelian, T is a nonabelian simple group and $S, T \in \{\text{PSL}_2(4), \text{PSL}_2(8)\}$. Since $C \leq G$ and the solvable radical W of C is characteristic in C, we obtain that $W \leq G$ and thus $W \leq N$ as N is the largest normal solvable subgroup of G. Clearly, $N \leq W$ as N is also a solvable normal subgroup of C, so $W = N$. Therefore, C/N has no nontrivial normal abelian subgroup. Thus $A = 1$ and hence $C/N \cong T$. Since $\pi(G/C) = \pi(M/N)$ and G/N has no normal abelian Sylow subgroup, we obtain that

$$\rho(G/N) = \pi(G/N) = \pi(C/N) \cup \pi(M/N) = \pi(S) \cup \pi(T).$$

It follows that

$$|\rho(G/N)| = |\pi(S) \cup \pi(T)| \leq |\pi(\text{PSL}_2(4)) \cup \pi(\text{PSL}_2(8))| = 4.$$
Hence, $\rho(G) - \rho(G/N)$ is nonempty. Now let $r \in \rho(G) - \rho(G/N)$. As $\{2, 3\} \subseteq \rho(G/N)$, we obtain that $r \notin \{2, 3\}$. By Lemma 3.2, $r \in \rho(N)$ and hence $r \mid \theta(1)$ for some $\theta \in \text{Irr}(N)$. Since $\sigma(M) \leq \sigma(G) \leq 2$ and $M/N \cong S$, by [1] Lemma 4.2 we deduce that θ extends to $\theta_0 \in \text{Irr}(M)$. Now let $\lambda \in \text{Irr}(M/N)$ with $2 \mid \lambda(1)$. By Gallagher’s Theorem, $\varphi = \theta_0\lambda \in \text{Irr}(M)$ with $\pi(\varphi(1)) = \{2, r\}$. Notice that $r \geq 5$ since $r \notin \{2, 3\}$. Now let $K = MC \leq G$. Then $K/M \cong T$ and $\sigma(K) \leq 2$. Applying the same argument as above, we deduce that φ extends to $\varphi_0 \in \text{Irr}(K)$. Clearly, $K/M \cong T$ has an irreducible character μ with $3 \mid \mu(1)$ and thus by Gallagher’s Theorem again, $\psi = \varphi_0\mu \in \text{Irr}(K)$ and obviously $\sigma(\psi) \geq 3$, which is a contradiction.

We are now ready to prove Theorem B which we state here.

Theorem 3.4. Let G be a group. If $\sigma(G) \leq 2$, then $|\rho(G)| \leq 2\sigma(G) + 1$.

Proof. Let G be a counterexample to the theorem with minimal order. Then $\sigma(G) \leq 2$ but $|\rho(G)| > 2\sigma(G) + 1$. If G is solvable or G is nonsolvable with $\sigma(G) = 1$, then $|\rho(G)| \leq 2\sigma(G) + 1$ by [3, G, 1, Man2], which is a contradiction. Thus we can assume that G is nonsolvable, $\sigma(G) = 2$ and $|\rho(G)| \geq 6$. Let N be the solvable radical of G. By Lemma 3.3, G/N is an almost simple group with simple socle M/N. Since $\sigma(M/N) \leq \sigma(G/N) \leq \sigma(G) = 2$, we deduce from Lemmas 2.5 and 2.4 that $|\pi(G/N)| = |\pi(M/N)| \leq 5$.

As $|\rho(G)| \geq 6$, we have that $\rho(G) - \rho(G/N)$ is nonempty and let $r \in \rho(G) - \rho(G/N)$. By Lemma 3.2, $r \mid \theta(1)$ for some $\theta \in \text{Irr}(N)$. Since $\sigma(M) \leq 2$, by applying [1, Lemma 4.2], we deduce that θ extends to $\theta_0 \in \text{Irr}(M)$. Using Gallagher’s Theorem, we must have that $\sigma(M/N) = 1$ and hence $M/N \cong \text{PSL}_2(4)$ or $\text{PSL}_2(8)$. Thus $|\pi(G/N)| = |\pi(M/N)| = 3$, hence $|\tau| \geq 3$, with $\tau = \rho(G) - \rho(G/N)$. By Lemma 3.2, we have that $\tau \subseteq \rho(N)$ and since N is solvable, by applying Pálfy’s Condition [P, Theorem], there exists $\psi \in \text{Irr}(N)$ such that $\psi(1)$ is divisible by two distinct primes in τ. Now by applying [1, Lemma 4.2] again, we obtain a contradiction. This contradiction shows that $|\rho(G)| \leq 2\sigma(G) + 1$ as wanted.

Acknowledgment

The author is grateful to the referee for the careful reading of the manuscript and for his or her corrections and suggestions.

References

D. White, Character degrees of extensions of $\text{PSL}_2(q)$ and $\text{SL}_2(q)$, *J. Group Theory* **16** (2013), 1–33.

H.P. Tong-Viet, Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242, USA

E-mail address: htongvie@kent.edu