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ABSTRACT

Let G be a finite group and let p be a prime. In this paper, we classify all

finite quasisimple groups in which the degrees of all irreducible p-Brauer

characters are prime powers. As an application, for a fixed odd prime p,

we classify all finite nonsolvable groups with the above mentioned prop-

erty and having no nontrivial normal p-subgroups. Furthermore, for an

arbitrary prime p, a complete classification of finite groups in which the

degrees of all nonlinear irreducible p-Brauer characters are primes is also

obtained.

1. Introduction

Throughout this paper, G is a finite group and p is a fixed prime. The study

of finite groups all of whose complex irreducible characters have prime power

degrees is a subject of interest for quite some time dating back to papers of

Isaacs and Passman first published in 1965. In [12, 13], among other things, the

authors investigated in detail the structure of finite groups whose all nonlinear

complex irreducible characters have prime degrees. In particular, such finite

groups G are solvable and the set of primes which divide some character degree

of G has cardinality at most two. These results have been improved by O.

Manz in [20, 21], where he showed that if the degrees of all complex irreducible

characters of a finite group G are prime powers, then either G is solvable and

there are at most two primes which can divide some character degree of G or
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G is nonsolvable and G = S × A, where S ∼= PSL2(q) with q ∈ {5, 8} and A

is an abelian group (see also [22, Corollary]). These results have led to the

following famous conjecture known as Huppert’s ρ − σ conjecture which says

that |ρ(G)| ≤ 2σ(G) if G is solvable; and |ρ(G)| ≤ 3σ(G) in general, where

ρ(G) is the set of all primes which divide some complex character degree of G

and σ(G) is the largest number of distinct primes that divide any given complex

character degree of G. (See [10]). Recent results concerning this conjecture can

be found in [2].

We now turn our attention to p-Brauer characters. Let IBrp(G) denote the

set of all irreducible p-Brauer characters of G and let cdp(G) be the set of all

degrees of irreducible p-Brauer characters of G. We write ρp(G) for the set of all

primes which divide the degree of some irreducible p-Brauer character of G and

σp(G) for the maximal number of distinct primes which can divide any given

irreducible p-Brauer character degree of G. We want to study a similar problem

for p-Brauer characters of finite groups, that is, when all irreducible p-Brauer

characters of a finite group G have prime power degrees, in other words, when

σp(G) = 1. In this situation, the problem is much more difficult as the degree

of an irreducible p-Brauer character of a group G may not divide the order

of G. Furthermore, several important results in characteristic 0 do not hold in

characteristic p. For example, Thompson’s theorem [11, Corollary 12.2] which

states that if a prime r divides the degrees of all nonlinear complex irreducible

characters of a finite group G, then G has a normal r-complement does not

hold for Brauer characters. In fact, there are nonabelian simple groups whose

all irreducible 2-Brauer characters have 2-power degrees. Also, the celebrated

Ito-Michler’s theorem [23, Theorem 5.5] only holds for the prime p, i.e., the

finite group G has a normal Sylow p-Subgroup if and only if the degrees of

all irreducible p-Brauer characters of G are coprime to p. Another difficulty is

that the degrees of irreducible p-Brauer characters of nonabelian simple groups

are still unknown. Recall that a finite group G is a quasisimple group if G

is perfect and G/Z(G) is a nonabelian simple group. There has been some

interest in classifying quasisimple groups G with σp(G) = 1. For instance, Tiep

and Willems [26] classified all quasisimple groups G in which the degrees of all

irreducible p-Brauer characters are powers of a fixed prime. Bessenrodt and

Weber [1] obtained a classification of all alternating groups An of degree n ≥ 1

with σp(An) = 1. In our first result, we complete this classification by proving

the following result.
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Theorem A: Let G be a finite quasisimple group and p be a prime. If all p-

Brauer irreducible characters of G have prime power degrees, then the following

hold:

(1) G/Z(G) ∼= PSL2(2f ) with f ≥ 2, PSp4(2f ) with f ≥ 2, 2B2(22f+1) with

f ≥ 1, PSL3(2f ) with 1 ≤ f ≤ 2, or PSL2(q) with q ≥ 17 a Fermat

prime; p = 2 and Z(G) is a p-group,

(2) G/Z(G) ∼= A6 and p = 2,

(3) G ∼= PSL2(2f ) where f ≥ 5 is prime and p = 2f − 1 is a Mersenne

prime,

(4) G ∼= A5 or PSL2(8) and p is an odd prime,

(5) G ∼= PSL2(pf ) with p odd and 7 ≤ pf ≤ 13,

(6) G ∼= SL2(5) ∼= 2 ·A5 and p = 5,

(7) G ∼= 3 ·A6 and p = 3.

The proof of this theorem will be carried out in Section 3. Most part of

that section is devoted to classifying finite simple groups G with σp(G) = 1.

The corresponding results for quasisimple groups follow immediately. In view

of [1], we will focus only on finite simple groups of Lie type and sporadic simple

groups. This is achieved in Theorem 3.4. The classification for sporadic simple

groups is done by using GAP [5] and results of Jansen [14]. For finite simple

groups of Lie type in characteristic r, we consider the cases when r = p and

r 6= p separately. For the former case, we use some results on the representation

theory of finite groups of Lie type in defining characteristic given in Lübeck [17].

For the latter case, we apply results of Malle [18] on the defect zero graphs of

finite simple groups.

Extending results of Isaacs and Passman in [12, 13] to positive characteristic,

B. Huppert [9] proved that if G is a finite p-solvable group with Op(G) = 1 and

that the degrees of all nonlinear irreducible p-Brauer characters of G are primes

and assume further that G is not one of the groups in [12, Theorem C 4.8] nor

[13, Theorem 6.1] then p = 3, G′ ∼= SL2(3) and |G : G′Z(G)| = 2. In our next

theorem, we generalize this result to finite nonsolvable groups when p is an odd

prime.

Theorem B: Let G be a finite nonsolvable group and let p be an odd prime.

Suppose that Op(G) = 1 and that all irreducible p-Brauer characters of G have
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prime power degrees. Then G′ is a quasisimple group and one of the following

holds:

(a) G′ is a simple group, CG(G′) = Z(G) is an abelian p′-group and one of

the following cases holds:

(i) G ∼= G′ × Z(G), where G′ and p are given in Cases (3) − (5) of

Theorem A,

(ii) G/Z(G) ∼= PSL2(8) · 3, G′ ∼= PSL2(8) and p = 3,

(iii) G/Z(G) ∼= PGL2(pf ), G′ ∼= PSL2(pf ), where pf is odd and 5 ≤
pf ≤ 13,

(b) G′ ∼= SL2(5), p = 5, CG(G′)/Z(G′) is an abelian p′-group, the degree

of every irreducible p-Brauer character of CG(G′) is a power of 2, and

either G = CG(G′)G′ is a central product or G/CG(G′) ∼= PGL2(5).

Conversely, if a group G and a prime p satisfy one of the conditions above, then

all irreducible p-Brauer characters of G have prime power degrees.

Since Op(G), the largest normal p-subgroup of G, is contained in the kernel

of every irreducible p-Brauer character of G, it is reasonable to assume that

Op(G) = 1 in the statement of Theorem B. This theorem will be proved in

Section 4. Notice that if G is a finite group, p is a prime and N �G such that

σp(G) = 1, then both σp(N) and σp(G/N) are trivial. The most crucial step

in the proof of Theorem B is the classification of finite perfect groups G with

σp(G) = 1. In fact, it is proved in Theorem 4.2 that if G is a finite perfect

group with σp(G) = 1 and Op(G) = 1, then G is a quasisimple group and the

possibilities for G and p are given in Cases (3) − (6) of Theorem A. We are

unable to obtain a similar result in the case p = 2 since ρ2(G) = {2} for almost

all quasisimple groups G with σ2(G) = 1. This is exactly where our argument

fails (see the proof of (1) of Theorem 4.2). Notice that if G is quasisimple and

σp(G) = 1 with p an odd prime, then |ρp(G)| ≥ 2.

In the last result, we complete the classification of finite groups whose all

nonlinear irreducible p-Brauer characters have prime degrees.

Theorem C: Let G be a finite group and let p be a prime. Suppose that

Op(G) = 1 and that the degrees of all nonlinear irreducible p-Brauer characters

of G are primes. Then the following hold:

(1) G is solvable and the degrees of all complex irreducible characters of G

are 1 or prime;
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(2) G is solvable, G′ ∼= SL2(3) and |G : Z(G)G′| = 2 with p = 3;

(3) G is nonsolvable, G′ ∼= PSL2(p) with p ∈ {5, 7} and |G : G′Z(G)| ≤ 2.

Finally, we mention that it is proved in [15] that if G is a solvable group with

Op(G) = 1 and σp(G) = 1, then |ρp(G)| ≤ 2. For nonsolvable groups G with

Op(G) = 1 and σp(G) = 1, where p is an odd prime, Theorem B implies that

|ρp(G)| ≤ 5 and this bound is best possible as |ρp(H)| = 5 and both σp(H) and

Op(H) are trivial, where H ∼= PSL2(13) and p = 13.

Notation: All groups in this paper are finite. We follow the notation in [11] for

complex characters and in [24] for p-Brauer characters. Let G be a finite group

and let p be a prime. We write Irr(G) for the set of all complex irreducible

characters of G and let cd(G) = {χ(1)|χ ∈ Irr(G)}. Similarly, IBrp(G) is the set

of all irreducible p-Brauer characters of G and cdp(G) = {ϕ(1) | ϕ ∈ IBrp(G)}.
If N �G and λ ∈ IBrp(N), then IBrp(G|λ) is the set of all constituents of λG in

IBrp(G). Furthermore, IBrp(G|N) = {ϕ ∈ IBrp(G) |N 6⊆ ker(ϕ)}. If χ ∈ Irr(G),

then χ◦ is the restriction of χ to G◦, the set of all p-regular elements of G. The

trivial p-Brauer character of G is denoted by 1G◦ . The set of all prime divisors

of the order of G is denoted by π(G). A group G is said to be a central product

of two normal subgroups H and K if G/Z = H/Z×K/Z and [H,K] = 1, where

Z = H ∩K. Other notation is standard.

2. Preliminaries

Recall that a complex irreducible character χ ∈ Irr(G) is said to have p-defect

zero for some prime p if χ(1)p = |G|p. It is well known that if χ ∈ Irr(G) is

of p-defect zero, then χ◦ ∈ IBrp(G) (see [24, Theorem 3.18]). Following Malle

[18], the defect zero graph ∆◦(G) of a group G is a graph whose vertex set is

the set of all primes dividing |G| and two distinct vertices u, v are connected

in ∆◦(G) if there exists a complex irreducible character χ ∈ Irr(G) which is

of defect zero for both u and v. (We reserve the notation ∆(G) for the prime

graph of a group G which will be defined in Section 4.) Now let S be a simple

group of Lie type in characteristic r with S 6= 2F4(2)′. It is well known that

the Steinberg character of S, denoted by StS , of degree |S|r is the only complex

irreducible character of S of r-defect zero. Hence, the defining prime r is an

isolated vertex in the defect zero graph ∆◦(S).
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Lemma 2.1: Let S be a nonabelian simple group of Lie type defined over a

finite field of size q in characteristic r with S 6∼= 2F4(2)′. Then the defect zero

graph ∆◦(S) of S has two connected components, one of which consists only

the defining prime r, or S is one of the following groups:

(1) PSL2(q) with q ≥ 4,

(2) PSL3(q), q = 26m+1 − 1 with 6m+ 1 prime or q = 3,

(3) PSU3(q), q = 22
2m

+ 1 with m ≥ 0 or q = 9,

(4) PSp4(q) with q ∈ {3, 5}.

Proof. This follows from Propositions 2.4 and 2.5 in [18].

The following result due to Zsigmondy will be very useful.

Lemma 2.2: (Zsigmondy’s theorem [27]). Let p be a prime and let n ≥ 2 be an

integer. Then there exists a prime ` such that ` | pn − 1 and ` does not divide

pm − 1 for 1 ≤ m < n unless

(1) p = 2 and n = 6 or

(2) p = 2r − 1 is a Mersenne prime and n = 2, with r being a prime.

As an easy application of Zsigmondy’s theorem, we obtain the following result.

Lemma 2.3: Let p and r be primes and a, f ≥ 1 be integers such that pf =

1 + ra. Then one of the following cases holds:

(1) r = 2, p = 3, f = 2 and a = 3,

(2) r = 2, f = 1, a is a 2-power and p = 2a + 1 is a Fermat prime,

(3) p = 2, a = 1 and r = 2f − 1 is a Mersenne prime, with f being a prime.

The following result is well known, see for example [1, Proposition 6.1]

Lemma 2.4: Let n ≥ 1 be an integer. Then a binomial
(
n
k

)
with 0 ≤ k ≤ n is a

nontrivial prime power only in the cases when k = 1 or n− 1 and n is a prime

power.

3. Simple groups with all irreducible p-Brauer characters having prime

power degrees

In this section, we classify all nonabelian simple groups S whose all irreducible p-

Brauer characters have prime power degrees. The case when S is an alternating

group has been handled by Bessenrodt and Weber [1]. Therefore, we only need
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to consider the sporadic simple groups and the simple groups of Lie type. Notice

that we consider the Tits group as a sporadic simple group rather than a simple

group of Lie type. We begin with the following observation.

Lemma 3.1: Let S be a nonabelian simple group and let p be a prime. Suppose

that σp(S) = 1. Then the following hold:

(1) If p 6∈ π(S), then S ∼= PSL2(q) with q ∈ {4, 5, 8}.
(2) If p ∈ π(S) and S has an irreducible character χ ∈ Irr(S) of p-defect

zero, then χ◦ ∈ IBrp(S), χ◦(1) = χ(1) = |S|p and p is an isolated vertex

of the defect zero graph ∆◦(S).

Proof. By [24, Theorem 2.12], we have that Irr(S) = IBrp(S) whenever p - |S|.
Thus, if p /∈ π(S), then all complex irreducible characters of S have prime power

degrees. By [22, Corollary] we obtain that S ∼= PSL2(4) ∼= PSL2(5) or PSL2(8).

This proves (1). Assume that p ∈ π(S). By [24, Theorem 3.18], if χ ∈ Irr(S) has

p-defect zero, then χ◦ ∈ IBrp(S) and so χ◦(1) = χ(1) is a prime power. Since

χ(1)p = |S|p > 1, we must have that χ(1) = |S|p. In particular, all irreducible

complex characters of S of p-defect zero must have the same degree |S|p. Hence,

p must be an isolated vertex in the defect zero graph ∆◦(S). This completes

the proof.

For the next result, we consider the following set up. Let G be a simply

connected simple algebraic group and let F : G −→ G be a suitable Frobenius

map such that S ∼= G F /Z(G F ) is a finite nonabelian simple group of Lie type

defined over a finite field of size q = pf in characteristic p, and that S 6∼= 2F4(2)′.

We refer to [17] for some terminology and notation on the representation theory

of finite groups of Lie type in defining characteristic. Let ` be the Lie rank of

G and fix a maximal torus T of G . Let X be the character group of T and

let {α1, α2, · · · , α`} ⊆ X be a set of simple roots for G with respect to T.

Let {ω1, ω2, · · · , ω`} be the fundamental weights. A weight ω ∈ X is called

dominant if it is a non-negative linear combination of fundamental weights. If

q is a power of p, then we put Xq = {
∑`
i=1 aiωi | ai ∈ Z, 0 ≤ ai ≤ q − 1}

if G F is not a Suzuki or Ree group; for Suzuki and Ree groups, we define

Xq = {
∑`
i=1 aiωi | 0 ≤ ai ≤ q/

√
p − 1 if αi is a long root, 0 ≤ ai ≤ q

√
p −

1 if αi is a short root}. A dominant weight λ = a1ω1 + a2ω2 + · · · + a`ω` ∈ X
is called p-restricted if 0 ≤ ai ≤ p− 1. It is well known that for each dominant

weight λ ∈ X, there is an irreducible G -module L(λ) with highest weight λ
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(see [17, Theorem 2.1]). By Steinberg’s tensor product theorem, all highest

weight modules L(λ) of G can be constructed from modules with p-restricted

highest weights. Then all the representations of G F is obtained by restricting G -

modules L(λ) with λ ∈ Xq to G F . (See [17, Theorem 2.2, 2.3]). If n is an integer

and p is a prime, then we define εp(n) = 1 if p | n and εp(n) = 0, otherwise.

For ε = ±, we use the convention that PSLεn(q) is PSLn(q) if ε = + and

PSUn(q) if ε = −; similar convention applies to SLεn(q). We also write E6
+(q)

for E6(q) and E−6 (q) for 2E6(q). Also, recall that A5
∼= PSL2(4) ∼= PSL2(5),

PSL2(9) ∼= PSp4(2)′ ∼= A6 and PSL4(2) ∼= A8.

Lemma 3.2: Let S be a nonabelian simple group of Lie type defined over a field

of size q with q = pf and S 6∼= 2F4(2)′. Suppose that σp(S) = 1 and that S is

not isomorphic to an alternating group nor PSL2(8). Then one of the following

cases holds:

(1) S ∼= PSL2(2f ) with f ≥ 4, PSp4(2f ) with f ≥ 2, 2B2(22f+1) with f ≥ 1,

PSL3(2f ) with 1 ≤ f ≤ 2, or

(2) S ∼= PSL2(p) with p odd and 7 ≤ p ≤ 13,

Proof. Let Z be the center of G(q) := G F and let ` be the Lie rank of G . Then

S ∼= G(q)/Z. We consider each type of G separately.

(1) G is of type A`, ` ≥ 1. Then S ∼= PSLε`+1(q) with ε = ±. By [18,

Lemma 3.7], S has irreducible p-Brauer characters of degree `2 + 2`− εp(`+ 1)

and
(
`+1
k

)
if k is a multiple of d := gcd(` + 1, q − ε1). These are the dimen-

sions of irreducible representations of G(q) with highest weights ω1 + ω` and

ωk, respectively.

Case ` ≥ 3. Assume first that p - ` + 1. Then `2 + 2` ∈ cdp(S) and thus

`(` + 2) = ra for some prime r and some integer a ≥ 1. Since gcd(` + 2, `) =

gcd(2, `), it must be that r = 2 and hence ` = 2u for some u ≥ 2 since ` ≥ 3. It

follows that `+2 = 2u+2 = 2a−u and thus 2u−1 +1 = 2a−u−1. Since u−1 ≥ 1,

the previous equation is impossible. Assume now that p | `+ 1. Since p - q− ε1,
we deduce that ` + 1 - q − ε1 and thus d = gcd(` + 1, q − ε1) < ` + 1. Let

k = max{2, d}. Since ` ≥ 3, we obtain that d = gcd(` + 1, q − ε1) 6= ` and so

2 ≤ k < `. Hence,
(
`+1
k

)
is the degree of an irreducible p-Brauer character of S

and thus it must be a nontrivial prime power, which is impossible by Lemma 2.4.

Case ` = 2. Assume first that 3 - q − ε1. Then the center Z of G(q) ∼=
SLε3(q) is trivial. Now if p ≥ 3, then L(2ω2), with 2ω2 being a p-restricted
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dominant weight, has dimension
(
2+2
2

)
= 6, which is not a prime power (see

[17, Appendix A.6]). Assume that p = 2. Since 3 - q − ε1, we must have that

q = 22m+1 if ε = +, and q = 22m if ε = −. Using [5], we can check that

PSL3(2) ∼= PSL2(7) satisfies the hypothesis of the lemma and since PSU3(2) is

not simple, we can assume that q > 2 and hence m ≥ 1. In this case, by [17,

Appendix A.6] the adjoint module L(ω1 +ω2) has dimension 8 and the natural

module L(ω2) has dimension 3, and thus by Steinberg’s tensor product theorem

[17, Theorem 2.2], we have that L((ω1 + ω2) + 2ω2) has dimension 8 · 3 = 24,

which is not a prime power. Assume that 3 | q − ε1. It follows that p 6= 3

and |Z| = 3. Let ξ ∈ F∗p be an element of order 3 and let z be a generator

of Z. Then (ω1(z), ω2(z)) = (ξ, ξ2) by [17, Appendix A.2]. If p ≥ 5, then

L(3ω1) has dimension
(
2+3
3

)
= 10 and Z acts trivially on this module. Hence,

L(3ω1) is an irreducible S-module and so 10 ∈ cdp(S), which is a contradiction.

Assume that p = 2. Then we have that q = 22m if ε = +, and q = 22m+1

if ε = −. Using [5], we can check that PSL3(4) satisfies the hypothesis of the

lemma while PSU3(8) does not. Hence, we can assume that m ≥ 2. We can see

that L((ω1 + ω2 + 2ω2 + 4ω2)) admits a trivial action of Z and has dimension

8 · 32 = 72. Hence, 72 ∈ cdp(S), which is impossible.

Case ` = 1. Then S ∼= PSL2(q) with q = pf . If p = 2, then all the irreducible

p-modular characters of S have 2-power degrees by [26, Proposition 2.4]. As-

sume now that p is odd. If q = p ≥ 7, then cdp(PSL2(q)) contains all the odd

numbers from 1 to p by [17, Remark 4.5]. By the hypothesis, we deduce that

q = p ∈ {7, 11, 13}. Assume that q = pf with p ≥ 3 and f ≥ 2. Assume first that

p ≥ 5. Then the dimensions of the representations for the p-restricted weights

2ω1 and 4ω1 are 3 and 5, respectively. By applying Steinberg’s tensor product

theorem [17, Theorem 2.2], we deduce that the dimension of the representation

L(2ω1 + 3 · (4ω1)) is 15, which is not a prime power. Furthermore, the center

Z of SL2(q) acts trivially on this representation, so 15 ∈ cdp(S), which is a

contradiction. Assume now that p = 3. Then f ≥ 3. By Steinberg’s tensor

product theorem [17, Theorem 2.2], the dimension of the representation L(λ)

with λ = ω1 + 3ω1 + 32(2ω1)) is 2 · 2 · 3 = 12 and Z acts trivially on L(λ) by

applying [17, Appendix A.2]. Hence, 12 ∈ cd3(S), a contradiction.

(2) G is of type C`, ` ≥ 2. We have that |Z| = gcd(2, p− 1). If (`, p) = (2, 2),

then all irreducible 2-Brauer characters of Sp4(2f ), f ≥ 2 or 2B2(22f+1), f ≥ 1,

have 2-power degrees by [26, Proposition 2.4]. Hence, we can assume that

(`, p) 6= (2, 2). Assume that p ≥ 3. Then 2ω` is p-restricted and Z acts trivially
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on L(2ω`) by [17, Appendix A.2] and so by [17, Table 2], 2`2 + ` = dim(L(2ω`))

must be a prime power. However this is impossible since gcd(`, 2` + 1) = 1

and ` ≥ 2. Assume next that p = 2 and ` ≥ 3. In this case, the center of G is

trivial and thus by applying [17, Table 2], S has irreducible p-Brauer characters

of degree 2` and 2`2 − `− 1− ε2(`). In all cases, we see that these degrees are

even and thus they must be 2-powers. It follows that ` = 2k for some k ≥ 2 and

2`2 − `− 1− ε2(`) = 2a for some a ≥ 2. We now have that 22k+1 − 2k − 2 = 2a

and so 22k−2k−1−1 = 2a−1. Clearly, this equation is impossible since a, k ≥ 2.

(3) G is of type B`, ` ≥ 3. Then p is odd. By Table 2 and Appendix A.2 in

[17], S has an irreducible p-Brauer character of degree 2`2+` with trivial action

of the center of G(q). Hence 2`2 + ` must be a prime power, which is impossible

since gcd(`, 2`+ 1) = 1 and ` ≥ 3.

(4) G is of type D`, ` ≥ 4. Assume that p = 2. Then the center of G(q) is

trivial. By [17, Table 2], S has irreducible p-Brauer characters of degree 2` and

2`2− `− gcd(2, `). Arguing as in case (2), we can see that these degrees cannot

be prime power. So, this case cannot happen. Assume next that p is odd. By

Appendix A.2 and Table 2 in [17], the representation L(ω`−1) is an irreducible

module for S with dimension 2`2 − `. But this degree cannot be a prime power

since gcd(`, 2`− 1) = 1 and ` ≥ 4.

(5) G is of type E6. By Appendix A.2 and Table 2 in [17], the representation

L(ω2) is an irreducible module for S with dimension 78 if p 6= 3 and 77 if p = 3.

Clearly, these degrees are not prime powers.

(6) G is of type E7. In this case, the representation L(ω1) is an irreducible

module for S with dimension 133 if p 6= 2 and 132 if p = 3 and these are not

prime powers.

(7) For the remaining groups of type G2,F4 and E8, the center of G(q) is

trivial. For groups of type G2, if p 6= 3, then L(ω1) has dimension 14 and

if p = 3, then L(2ω1 + ω2) has dimension 189. For groups of type F4, the

representation L(ω1) has dimension 52 if p 6= 2 and 26 if p = 2. Finally, for

groups of type E8, the representation L(ω5) has dimension 248. We can easily

check that these degrees are not prime powers. The proof is now complete.

We now consider the case when S is a simple group of Lie type and p is

different from the defining characteristic of S.

Lemma 3.3: Let S be a nonabelian simple group of Lie type defined over a

field of size q with q = rf and S 6∼= 2F4(2)′. Let p be a prime different from
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r. Suppose that σp(S) = 1 and that S is isomorphic to neither an alternating

group nor PSL2(8). Then the following hold:

(1) S ∼= PSL2(q) with q ≥ 17 a Fermat prime and p = 2,

(2) S ∼= PSL2(2f ) where f ≥ 5 is a prime and p = 2f − 1 is a Mersenne

prime,

(3) S ∼= PSL2(7) and p = 2.

Proof. Since S is not isomorphic to PSL2(q) for any q ∈ {4, 5, 8}, by Lemma 3.1(1)

we can assume that p divides |S|. By [4, Corollary 2], we deduce that S has a

complex irreducible character of p-defect zero and thus by Lemma 3.1(2), p is an

isolated degree in the defect zero graph ∆◦(S) of S. By [11, Theorem 3.10], we

know that |π(S)| ≥ 3. Now assume that ∆◦(S) has exactly two connected com-

ponents. By Lemma 2.1, since p is not the defining prime of S and |π(S)| ≥ 3,

we deduce that p must lie in a connected component of ∆◦(S) consisting of at

least 2 vertices, a contradiction. Thus ∆◦(S) has three connected components

and so by Lemma 2.1 again, one of the following cases holds:

(1) S ∼= PSL2(q) with q = rf ≥ 4. For this case, the degrees of the irreducible

p-Brauer characters of S are available in [7]. If S ∼= PSL2(7) ∼= PSL3(2), then

by using [5] we can check that all irreducible p-Brauer characters of PSL2(7)

have prime power degrees for some prime p 6= 7 if and only if p = 2. This gives

rise to case (3). Since PSL2(5) ∼= A5 and PSL2(9) ∼= A6, we can assume that

q ≥ 11. By [7, Table 2], we have that q − 1 ∈ cdp(S) and thus q − 1 must be a

prime power.

Assume that q is odd. Then q−1 = 2a for some integer a ≥ 4 since q−1 ≥ 10

is even. Since q = rf ≥ 11, by Lemma 2.3 we have that a = 2m for some integer

m ≥ 2 and f = 1 so q is a Fermat prime and q ≥ 17. In particular, q ≡ 1

(mod 4). Assume p = 2. Since ((q − 1)/4)2′ = 1, we obtain that cd2(S) =

{1, (q − 1)/2, q − 1}. This proves (1). Assume p 6= 2. Then (q + 1)/2 ∈ cdp(S)

and so (q + 1)/2 = 22
m−1 + 1 must be a prime power. Since 2m − 1 is odd,

22
m−1 + 1 is always divisible by 3, so 22

m−1 + 1 = 3k for some integer k ≥ 1.

However, by Lemma 2.3, this equation holds only when k = 2 and a = 4 which

implies that q = 1 + 24 = 17. But then by using [5] we can check that PSL2(17)

does not satisfy the hypothesis of the lemma for any odd prime p.

Now assume that q = 2f with f ≥ 4. Hence 2f − 1 = sb for some prime s and

integer b ≥ 1. By Lemma 2.3, we deduce that f ≥ 5 is a prime and b = 1. So,

q − 1 = s is a Mersenne prime. Now if p = s, then cdp(S) = {1, q − 1, q} since
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p = q − 1 - q + 1. Hence, all irreducible p-Brauer characters of S have prime

power degrees. This is case (2) of the lemma. Assume now that p 6= q−1. Then

p | q + 1 and (q − 1)p′ 6= 1, so cdp(S) = {1, q − 1, q + 1}. Therefore, q + 1 = uk

for some prime u and integer k ≥ 1. Then 2f + 1 = uk which implies that u = 3

as f is odd so that 2f + 1 is divisible by 3. Hence, we obtain that f = 3 by

Lemma 2.3, which is a contradiction.

(2) S ∼= PSL3(q), q = 26m+1 − 1 with 6m + 1 prime, or q = 3. Since S has

an irreducible complex character of prime power degree |S|p by Lemma 3.1(2),

where p is not the defining characteristic of S, we deduce from [19, Theorem 1.1]

that gcd(3, q − 1) = 1 and (q3 − 1)/(q − 1) is a prime power. The case when

q = 3 can be ruled out by using [5]. Hence, we can assume that q = 26m+1 − 1

with 6m+1 prime. However, we can see that q−1 = 2((26)m−1) is divisible by

26− 1 = 32 · 7 and so by 3. Thus gcd(3, q− 1) = 3 > 1, which is a contradiction.

(3) S ∼= PSU3(q), q = 22
2m

+ 1 with m ≥ 0, or q = 9. As in the previous

case, by applying [19, Theorem 1.1] we must have that gcd(3, q + 1) = 1 and

(q3 + 1)/(q+ 1) is a prime power. The cases when q = 9 or m = 0 can be ruled

out by using [5]. For the remaining cases, we see that q + 1 = 2(22
2m−1 + 1).

Obviously, 22m − 1 = 4m − 1 = 3k, where k ≥ 1 is odd. Then q + 1 =

2(23k + 1) = 2(8k + 1) is always divisible by 8 + 1 = 32 since k is odd, hence

gcd(3, q + 1) = 3 > 1, a contradiction.

(4) S ∼= PSp4(q) with q ∈ {3, 5}. These cases can be ruled out by using [5].

The proof is now complete.

We are now ready to classify all simple groups whose all irreducible p-Brauer

characters have prime power degrees.

Theorem 3.4: Let S be a nonabelian simple group and let p be a prime. If

σp(S) = 1, then one of the following cases holds:

(1) S ∼= A5 or PSL2(8) and p is any prime,

(2) S ∼= PSL2(p) with p odd and 7 ≤ p ≤ 13,

(3) S ∼= PSL2(2f ) with f ≥ 4, PSp4(2f ) with f ≥ 2, 2B2(22f+1) with f ≥ 1,

or PSL3(2f ) with 1 ≤ f ≤ 2; and p = 2,

(4) S ∼= PSL2(q) with q ≥ 17 a Fermat prime and p = 2,

(5) S ∼= PSL2(2f ) where f ≥ 5 is a prime and p = 2f − 1 is a Mersenne

prime,

(6) S ∼= A6 and p ∈ {2, 3}.
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Proof. If S ∼= A5 or PSL2(8), then all irreducible p-Brauer characters of S have

prime power degree for every prime p by using [5]. Hence, we can assume from

now on that S is not isomorphic to one of these simple groups. By Lemma 3.1(1),

we can also assume that p divides |S|. We will use the classification of finite

simple groups.

Assume first that S is a sporadic simple group or the Tits group. Assume

that S has a complex irreducible character of p−defect zero. By Lemma 3.1(2),

S has a complex irreducible character χ ∈ Irr(S) with χ(1) = |S|p. By [19,

Theorem 1.1], we have that S ∼= M11 and p ∈ {2, 11} or S ∼= M12 and p = 11,

or S ∈ {M24,Co2,Co3} and p = 23. As the p-Brauer character tables of these

simple groups are available in [5], it is routine to check that all the pairs (S, p)

above do not satisfy the hypothesis of the theorem. Assume now that S has

no complex irreducible character of p−defect zero. Then S and p appear in [4,

Corollary 2]. For these cases, the p-Brauer character tables of S are available

in GAP [5] except for the cases S ∈ {Co1,B} with p = 2. Now using [5] and

[14] for the exceptions above, we can easily check that these cases give rise to

no examples of simple groups satisfying the hypothesis of the theorem.

Now if S is an alternating group of degree at least 6, then the result follows

from [1, Corollary 1.3]. This gives rise to case (6). Finally, for simple group

of Lie type which is not isomorphic to an alternating group, we obtain Cases

(2)− (5) by Lemmas 3.2 and 3.3. The proof is now complete.

Recall that if G is a group and p is a prime, then Op(G) is the largest normal

p-subgroup of G. Moreover, Op(G) is contained in the kernel of every irreducible

p-Brauer character of G, hence cdp(G/Op(G)) = cdp(G). Now assume that G is

a quasisimple groups whose all irreducible p-Brauer characters have prime power

degrees for some prime p. Since cdp(G/Z(G)) ⊆ cdp(G), we see that G/Z(G)

satisfies the hypotheses of Theorem 3.4, so G/Z(G) appears in the conclusion of

that theorem. As the Schur multiplier of these simple groups are known, using

[5, 7, 17], we can easily deduce the following.

Corollary 3.5: Let G be a quasisimple group and let p be a prime. If σp(G) =

1 and Z(G) is nontrivial, then the following cases hold:

(1) G/Z(G) ∼= A5 and p ∈ {2, 5},
(2) G/Z(G) ∼= 2B2(8), PSL3(2) or PSL3(4); p = 2 and Z(G) is a 2-group,

(3) G/Z(G) ∼= PSL2(q) with q ≥ 17 a Fermat prime and p = 2,



14 HP TONG-VIET Isr. J. Math.

(4) G/Z(G) ∼= A6 and p = 2 or Z(G) is a 3-group and p = 3.

Proof. As the center Z(G) of G is nontrivial, by applying Theorem 3.4 one of

the following cases holds:

(1) G ∼= 2 · A5. Using [5], we have that p ∈ {2, 5}. For other primes, we can

see that 6 ∈ cdp(G).

(2) G ∼= SL2(p) with 7 ≤ p ≤ 13. By [17, Remark 4.5], we have that 6 ∈
cdp(G), so G does not satisfy the hypothesis of the corollary.

(3) G/Z(G) ∼= PSL3(2f ) with 1 ≤ f ≤ 2 or 2B2(8) and p = 2. Recall that the

Schur multiplier of PSL3(2), PSL3(4) and 2B2(8) is isomorphic to Z2, Z3×Z4×
Z4 or Z2

2, respectively. Using [5], we can check that G satisfies the hypothesis

of the corollary only when Z(G) is a 2-group. Indeed, cd2(G) always contains

24 if 3 divides |Z(G)|.
(4) G ∼= SL2(q) with q ≥ 17 a Fermat prime and p = 2. Since Z(G) is a

p-group, G satisfies the hypothesis of the corollary.

(5) G/Z(G) ∼= A6 and p ∈ {2, 3}. In this case, the Schur multiplier of A6

is cyclic of order 6. If p = 2, then G always satisfies the hypothesis of the

corollary for all possibilities of Z(G). When p = 3, G satisfies the hypothesis of

the corollary only when Z(G) is a 3-group.

Theorem A now follows from Theorem 3.4 and Corollary 3.5. The next result

will be needed in the proof of Theorem C.

Corollary 3.6: Let S be a nonabelian simple group and let p be a prime.

If all nonlinear irreducible p-Brauer characters of S have prime degrees, then

S ∼= PSL2(p) with p ∈ {5, 7}.

When p is an odd prime, we obtain the following.

Corollary 3.7: Let G be a quasisimple group and let p be an odd prime. If

σp(G) = 1, then the following hold:

(1) G ∼= PSL2(2f ) where f ≥ 5 is a prime and p = 2f − 1 is a Mersenne

prime,

(2) G ∼= A5 or PSL2(8) and p is any odd prime,

(3) G ∼= PSL2(pf ) with p odd and 7 ≤ pf ≤ 13,

(4) G ∼= 2 ·A5 and p = 5,

(5) G ∼= 3 ·A6 and p = 3.
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Moreover, G has at least two nontrivial p-Brauer character degrees u and v,

where u is a power of p and v is a power of a prime s different from p.

Recall that a group G is said to be an almost simple group with socle S if S

is a nonabelian simple group and S �G ≤ Aut(S).

Corollary 3.8: Let G be an almost simple group with simple socle S and let

p be an odd prime. Suppose that σp(G) = 1 and G 6= S. Then the following

hold:

(1) G ∼= PSL2(8) · 3 and p = 3 or

(2) G ∼= PGL2(pf ) with 5 ≤ pf ≤ 13.

Proof. Since S � G and σp(G) = 1, we deduce that σp(S) = 1, so S is one of

the simple groups given in Cases (1)− (3) of Corollary 3.7. The last two cases

can be deal with easily by using [5]. Hence, we can assume that S ∼= PSL2(2f )

with f ≥ 5 a prime and p = 2f − 1 a Mersenne prime. In this case, we

have that SL2(2f ) ∼= PGL2(2f ) ∼= PSL2(2f ) and Aut(S) ∼= S〈ϕ〉, where ϕ

is a field automorphism of S of prime order f. It follows that G = S〈ϕ〉 as

|G : S| > 1. Since f ≥ 5, 2f + 1 has a primitive prime divisor r > 3. Let G

be a simply connected simple algebraic group and F be a Frobenius map of

G such that G F ∼= SL2(2f ). Let (G ∗, F ∗) be dual to (G , F ). Then (G ∗)F
∗ ∼=

PGL2(2f ) ∼= S. Let s ∈ PGL2(2f ) ∼= S be a semisimple element of order r. We

have that |CS(s)| = 2f + 1. Let ϕ∗ be an automorphism of G ∗ induced by the

field automorphism x 7→ x2. Then r does not divide |(G ∗)ϕ∗ |. By [3, Lemma 2.5],

S ∼= SL2(2f ) has an irreducible character χs of order |S : CS(s)|2′ = 2f − 1

and χs is not ϕ-invariant. Since χs(1) = p, both χs and χϕs are of p-defect

zero and so χϕs (x) = 0 = χs(x) for any x ∈ S with |x| = p. Notice that all

nontrivial p-singular elements of S have order p. As χs is not ϕ-invariant, it

follows that χϕs (y) 6= χs(y) for some p-regular element y ∈ S. In particular,

λ = χ◦s ∈ IBrp(S) is not ϕ-invariant and thus we deduce that λG ∈ IBrp(G), so

λG(1) = pf ∈ cdp(G), which is impossible.

4. Groups whose all irreducible p-Brauer characters have prime power

degrees

We will prove Theorems B and C in this section. Recall that the prime graph

∆(G) of a group G is a graph whose vertex set is ρ(G) and there is an edge
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between two distinct primes r and s if and only if the product rs divides some

complex character degree of G. The structure of a group G whose prime graph

∆(G) is disconnected has been studied in [16]. We first begin with the following

technical lemma.

Lemma 4.1: Let p be an odd prime and let N be a normal subgroup of a perfect

group G such that G/N is a quasisimple group and Op(G) = 1. Suppose that no

nontrivial irreducible p-Brauer characters of N is G-invariant and σp(G) = 1.

Then N is trivial.

Proof. Suppose by contradiction that N is nontrivial.

Claim 1. If 1N◦ 6= λ ∈ IBrp(N) and I = IG(λ), then the following hold:

(1) G/N ∼= A5, I/N ∼= A4, |G : I| = 5 and p is any odd prime,

(2) G/N ∼= 2 ·A5, I/N ∼= SL2(3), |G : I| = 5 and p = 5,

(3) G/N ∼= PSL2(8), I/N ∼= 23 : 7, |G : I| = 32 and p is any odd prime,

(4) G/N ∼= PSL2(11), I/N ∼= A5, |G : I| = 11 and p = 11,

(5) G/N ∼= PSL2(7), I/N ∼= 7 : 3 or S4, |G : I| = 8 or 7, respectively and

p = 7.

Furthermore, I/N is a nonabelian Hall subgroup of G/N.

Let λ ∈ IBrp(N) be a nontrivial p-Brauer character of N. By our assumption,

we have that N � I := IG(λ) � G. By [24, Theorem 8.9], we have that ϕG ∈
IBrp(G) for any ϕ ∈ IBrp(I|λ), hence ϕG(1) = |G : I|ϕ(1) ∈ cdp(G) is a prime

power and so |G : I| is a prime power. Since σp(G/N) = 1, we deduce that

G/N is one of the quasisimple groups in Corollary 3.7. Now the result follows

by applying [6, Theorem 1] and Lemma 2.3. The last statement is obvious.

Claim 2. For every 1N◦ 6= λ ∈ IBrp(N), we have that p | |I/N | with

I = IG(λ), and one of the following cases holds:

(i) G/N ∼= A5, I/N ∼= A4, |G : I| = 5 and p = 3, or

(ii) G/N ∼= PSL2(8), I/N ∼= 23 : 7, |G : I| = 32 and p = 7, or

(iii) G/N ∼= PSL2(7), I/N ∼= 7 : 3, |G : I| = 8, and p = 7.

By way of contradiction, suppose that p - |I/N |. By Claim 1, one of the

following cases holds:

(a) G/N ∼= A5, I/N ∼= A4, |G : I| = 5 and p ≥ 5,

(b) G/N ∼= 2 ·A5, I/N ∼= SL2(3), |G : I| = 5 and p = 5,

(c) G/N ∼= PSL2(8), I/N ∼= 23 : 7, |G : I| = 32 and 3 ≤ p 6= 7

(d) G/N ∼= PSL2(11), I/N ∼= A5, |G : I| = 11 and p = 11,
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(e) G/N ∼= PSL2(7), I/N ∼= S4, |G : I| = 7, and p = 7.

Observe that in all cases, I/N is a nonabelian p′-group and gcd(|G : I|, |I/N |) =

1. Assume first that λ extends to λ0 ∈ IBrp(I). By [24, Corollary 8.20], λ0µ ∈
IBrp(I|λ) for all µ ∈ IBrp(I/N). Since IBrp(I/N) = Irr(I/N) and I/N is non-

abelian, I/N has a nonlinear irreducible p-Brauer character µ such that p - µ(1).

It follows that (λ0µ)G ∈ IBrp(G) with degree |G : I|λ(1)µ(1). Obviously, this

degree cannot be a prime power. Thus λ is I-invariant but not extendible to I.

Hence, there exists ϕ ∈ IBrp(I|λ) with ϕN = eλ, where e is nontrivial. Since

|I/N | is prime to p, I/N is p-solvable and so by [24, Theorem 8.30], we ob-

tain that ϕ(1)/λ(1) = e divides |I/N |. In particular, gcd(e, |G : I|) = 1. Since

ϕG ∈ IBrp(G), we deduce that ϕG(1) = |G : I|eλ(1) is a prime power, which is

impossible. Therefore, we conclude that p divides |I/N |. Now the result follows

by checking the list given in the previous claim.

Claim 3. N is a solvable p′-group.

By Claim 2, for every 1N◦ 6= λ ∈ IBrp(N), we have that |G : I| = ra for

some fixed prime r 6= p and some integer a ≥ 1. Hence, if ϕ ∈ IBrp(I|λ),

then ϕG(1) = raϕ(1) ∈ cdp(G) must be an r-power. Since λ(1) | ϕ(1), we

deduce that λ(1) is an r-power, thus the degree of every irreducible p-Brauer

character of N is a power of r, so by [26, Corollary 1.2], N is solvable as p is

odd. Moreover, by [23, Theorem 5.5] the Sylow p-subgroup P of N is normal

in N. Since N �G, we must have that P �G and thus P ⊆ Op(G) = 1, hence

P = 1 which implies that N is a solvable p′-group as wanted.

The final contradiction Let L �N be a normal subgroup of G such that

N/L is a chief factor of G. Since N is a solvable p′-subgroup of G, we deduce

that N/L is an elementary abelian s-group for some prime s different from p.

Without lost of generality, we can assume that L = 1. Then N is a minimal

normal subgroup of G, where G/N ∼= PSL2(q) with q ∈ {5, 7, 8} and G is

perfect.

Since |N | is prime to p, we have that Irr(N) = IBrp(N). For every 1N 6= θ ∈
Irr(N), θ can be considered as a p-Brauer character of N and hence I/N ∼=
A4, 2

3 : 7 or 7 : 3 when q = 5, 8 or 7, respectively, where I = IG(θ). Notice

that p = 3, 7 or 7, respectively. Then by [24, Theorem 8.15], θ determines

a unique element [θ]I/N of the Schur Multiplier M(I/N,F∗) = H2(I/N,F∗),
where F is an algebraically closed field of characteristic p. It is also well known

that M(I/N,F∗) is isomorphic to the p′-part of the Schur multiplier M(I/N) :=
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M(I/N,C∗) in characteristic zero. Now if I/N ∼= 7 : 3, then M(I/N) is trivial

since all Sylow r-subgroups of I/N are cyclic. Assume that I/N ∼= 23 : 7 ∼= H.

Since M(PSL2(8)) = 1 and H is the normalizer in PSL2(8) of an abelian Sylow

2-subgroup, we obtain that M(H)2 ∼= M(PSL2(8))2 = 1 (see [8]). Moreover,

M(H) is a 2-group as the Sylow 7-subgroups of H are cyclic, so M(H) = 1.

Finally, if I/H ∼= A4, then M(H) ∼= Z2.

Assume that q ∈ {5, 8}. Let 1N◦ 6= λ ∈ IBrp(N) = Irr(N). Observe that

the Sylow p-subgroup of I/N is cyclic of order p and it is not normal in I/N,

where I = IG(λ). By [5], we see that I/N has an irreducible p-Brauer character

µ of degree p. If λ extends to λ0 ∈ IBrp(I), then λ0µ ∈ IBrp(I|λ) and thus

(λ0µ)G ∈ IBrp(G) so that (λ0)µG(1) = |G : I|µ(1) = p|G : I| is a prime power

which is impossible as p - |G : I|. Therefore, λ is not extendible to I. It follows

that G/N ∼= A5 and I/N ∼= A4 since M(23 : 7,F∗) = 1. Since M(A4) ∼= Z2 and

the full covering group of A4 is 2 · A4
∼= SL2(3), using the theory of modular

character triple isomorphisms [24, Theorem 8.28], there exists ϕ ∈ IBrp(I|λ)

such that ϕN = 2λ as SL2(3) has a faithful irreducible p-Brauer character of

degree 2. Hence, ϕG ∈ IBrp(G) and so ϕG(1) = 5 · 2 = 10, which is not a prime

power, a contradiction.

Assume that q = 7. As the Schur multiplier of I/N ∼= 7 : 3 is trivial, θ extends

to θ0 ∈ Irr(IG(θ)|θ). By Gallagher’s theorem [11, Corollary 6.17], θ0µ with µ ∈
Irr(IG(θ)|) are all the irreducible constituents of θI . Since cd(IG(θ)/N) = {1, 3},
we deduce that every irreducible character in Irr(G|θ) has degree 8 or 24. Since

this is true for all θ ∈ Irr(N), we deduce that cd(G) = {8, 24} ∪ cd(G/N) =

{1, 3, 6, 7, 8, 24}. It follows that the prime graph ∆(G) has exactly two connected

components. Since G is not simple, by [16, Theorem 6.2] either G ∼= SL2(q1)

for some odd prime power q1 ≥ 5 or G has a normal subgroup L such that

G/L ∼= SL2(q1) for some prime power q1 ≥ 4, L is elementary abelian of order

q21 , and G/L acts transitively on the nontrivial characters in Irr(L). As G/N ∼=
PSL2(7), in both cases, we deduce that q1 = 7 and G has a quotient group

which is isomorphic to SL2(7). However, this is impossible as σ7(SL2(7)) > 1.

The proof is now complete.

Theorem 4.2: Let p be an odd prime and let G be a perfect group. Sup-

pose that σp(G) = 1 and Op(G) = 1. Then G is a quasisimple group and the

possibilities for G and p are given in Cases (1)− (4) in Corollary 3.7.
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Proof. Let N be a maximal normal subgroup of G. Since G is perfect, G/N is

a nonabelian simple group and σp(G/N) = 1. Hence, G/N is isomorphic to one

of the simple groups in Cases (1)− (3) of Corollary 3.7.

(1) Assume that there exists a nontrivial p-Brauer character λ ∈ IBrp(N)

such that λ is G-invariant. If λ extends to λ0 ∈ IBrp(G), then λ0(1) = λ(1) ≥
2 since G is perfect. By [24, Corollary 8.20], λ0µ for µ ∈ IBrp(G/N) are

all the irreducible constituents of λG. By Corollary 3.7, G/N has two irre-

ducible p-Brauer characters µi, i = 1, 2 such that µi(1) are prime powers and

gcd(µ1(1), µ2(1)) = 1. But then for i = 1, 2, λ0(1)µi(1) ∈ cdp(G) cannot be

prime powers as λ0(1) ≥ 2. Therefore, we conclude that λ is G-invariant but

not extendible to G. By the theory of modular character triple isomorphisms

[24, Theorem 8.28], the triple (G,N, λ) is modular character triple isomorphic

to the triple (Γ, A, µ), where Γ is perfect, Γ/A ∼= G/N, µ is a faithful linear

character of A and A is a central p′-subgroup of Γ. It follows that Γ ∼= SL2(pf )

with 7 ≤ pf ≤ 13 and pf being odd or Γ ∼= SL2(5) and p is any odd prime;

moreover, A = Z(Γ) ∼= Z2. Now if e > 1 is the degree of some faithful irreducible

p-Brauer character of Γ, then ϕN = eλ for some ϕ ∈ IBrp(G|λ) and thus e must

be a prime power. As 6 is always a degree of some faithful irreducible p-Brauer

character of SL2(pf ) for odd pf > 5, or SL2(5) when 3 ≤ p 6= 5, we must

have that G/N ∼= PSL2(5) and p = 5. As the degrees of all faithful irreducible

5-Brauer characters of SL2(5) are powers of 2, we deduce that λ(1) must be a

2-power whenever λ ∈ IBrp(N) is G-invariant.

We next claim that all irreducible 5-Brauer characters of N is G-invariant

and thus all elements in cd5(N) are powers of 2 hence N is solvable by [26,

Corollary 1.2], so by [23, Theorem 5.5] we deduce that the Sylow 5-subgroup

of N is normal in N and thus it is contained in O5(G) = 1 so that N must

be a solvable 5′-group. To prove this claim, suppose that N has an irreducible

5-Brauer character µ such that µ is not G-invariant and let I = IG(µ). Let

ϕ ∈ IBr5(I|µ). Then ϕG(1) = |G : I|ϕ(1) ∈ cd5(G) is prime power, so |G : I|,
the index of a subgroup of PSL2(5), is a prime power. It follows that I/N ∼= A4

and |G : I| = 5. Now arguing as in the proof of Claim 2 of Lemma 4.1, we obtain

a contradiction. Thus N is a solvable 5′-group. Let θ ∈ Irr(N) be a linear

character of N. Then θ is also a 5-Brauer character of N and so θ is G-invariant

but not extendible to G since G is perfect. It follows that G/ker(θ) ∼= SL2(5).

Now let M = ker(θ) � G. If a nontrivial p-Brauer character λ ∈ IBr5(M)

is G-invariant, then it must extend to G as the Schur multiplier of SL2(5) is
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trivial and so with the same reasoning as in the previous paragraph, we obtain

a contradiction. Thus no nontrivial irreducible 5-Brauer character of M is G-

invariant and hence by applying Lemma 4.1, M is trivial, so G ∼= SL2(5) and

p = 5. This is Case (4) in Corollary 3.7.

(2) Assume now that no nontrivial irreducible p-Brauer character of N is

G-invariant. It follows from Lemma 4.1 that N is trivial and so G is one

of the simple groups in Cases (1) − (3) of Corollary 3.7. The proof is now

complete.

We are now ready to prove Theorem B.

Proof of Theorem B. Let K be the last term of the derived series of G. Since

G is nonsolvable, we deduce that K is a nontrivial perfect normal subgroup

of G. Moreover, σp(K) = 1 so by Theorem 4.2, K is quasisimple and the

possibilities for K and p are given in Cases (1)− (4) of Corollary 3.7. We note

that Z := Z(K) is cyclic of order at most 2 and thus Z ⊆ Z(G). Let C be a

normal subgroup of G defined by C/Z = CG/Z(K/Z). Then Z � C � G and

[K,C] ≤ Z. Since Z = Z(K), we have that [K,C,K] = [C,K,K] = 1. By

Three Subgroups Lemma, we deduce that [K,K,C] = 1, which implies that C

centralizes [K,K] = K, hence [C,K] = 1. In particular, C = CG(K) and G/C

is an almost simple group with simple socle K/Z.

Claim 1. All irreducible p-Brauer characters of C/Z is linear.

Let L = CK �G. Then L/Z ∼= C/Z ×K/Z since K ∩C = Z and [C,K] = 1.

Since Op(G) = 1, we obtain that Op(C) = 1. As σp(G) = 1, we deduce that

σp(K/Z) = σp(L/Z) = 1. By Corollary 3.7, there exist u, v ∈ cdp(K/Z) such

that u, v are nontrivial prime powers and gcd(u, v) = 1. Let λ ∈ IBrp(C/Z).

Then both λ(1)u and λ(1)v lie in cdp(L/Z) by [24, Theorem 8.21], so they are

both prime powers, which is impossible unless λ(1) = 1. Hence, all irreducible

p-Brauer characters of C/Z are linear.

Claim 2. C/Z is an abelian p′-group and if Z is nontrivial, then all irre-

ducible p-Brauer characters of C have 2-power degrees.

Assume first that Z = 1. ThenK is a nonabelian simple group and by Claim 1,

all irreducible p-Brauer characters of C are linear. Since Op(C) = 1, it follows

that C is an abelian p′-group.

Assume that Z is nontrivial. Then Z ∼= Z2, K ∼= SL2(5) and p = 5. By

Claim 1, IBrp(C/Z) contains only linear p-Brauer characters. Let L = CK�G.
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Now let λ ∈ IBrp(C) with λ 6= 1C◦ . Then λZ = λ(1)µ for some nontrivial p-

Brauer character µ ∈ IBrp(Z) = Irr(Z). It follows that λ ∈ IBrp(C|µ). Using

[5], IBrp(K|µ) contains an irreducible p-Brauer character γ of degree 2. Since

L = CK, [C,K] = 1 and L/Z ∼= C/Z ×K/Z, by applying [25, Lemma 2.2] we

obtain that χ = λ · γ ∈ IBrp(L|µ) with χ(1) = λ(1)γ(1) = 2λ(1). As σp(L) = 1,

we must have that χ(1) = 2λ(1) is a 2-power, so λ must be a power of 2.

Therefore, we conclude that all irreducible p-Brauer characters of C have 2-

power degrees. By [26, Corollary 1.2] and [23, Theorem 5.5] we have that C is

a solvable p′-group since p is odd and Op(C) = 1. This forces C/Z is a p′-group

and so C/Z must be abelian.

Claim 3. K = G′.

If G/C is simple, then G = CK and thus G/Z ∼= C/Z ×K/Z. Since C/Z is

abelian by Claim 2, we deduce that (G/Z)′ = K/Z, which implies that K = G′

since Z ≤ K. Hence, we can assume that G/C is not simple. Notice that

σp(G/C) = 1 so G/C and p are given in Corollary 3.8. In particular, (G/C)′

is simple and either (G/C)′ ∼= PSL2(8) and p = 3 or (G/C)′ ∼= PSL2(pf )

with 5 ≤ pf ≤ 13. We have that (G/C)′ = G′C/C = KC/C ∼= K/Z. In

all cases, K/Z has a nontrivial irreducible p-Brauer character λ of degree 7 if

K/Z ∼= PSL2(8) and pf otherwise, which is extendible to G/C. We also note

that gcd(|G : CK|, λ(1)) = 1. Since CK/Z ∼= C/Z × K/Z, we deduce that

ϕ = 1C/Z × λ ∈ IBrp(CK/Z) is an extension of λ to CK. As G/CK is cyclic

of order 3 or 2, if ϕ is not G-invariant, then ϕG ∈ IBrp(G), so ϕG(1) = |G :

CK|λ(1) ∈ cdp(G), which is impossible as this degree cannot be a prime power.

Thus ϕ is G-invariant and so by [24, Theorem 8.12], ϕ extends to λ0 ∈ IBrp(G),

therefore λ is extendible to λ0 ∈ IBrp(G). Now by applying [24, Corollary 8.20],

λ0(1)µ(1) ∈ cdp(G) for all µ ∈ IBrp(G/K). Observe that G/K has a normal

abelian p′-subgroup CK/K with index |G : CK| = 3 or 2. It follows that

cdp(G/K) ⊆ {1, 2, 3}. Since λ(1) ≥ 5, we deduce that µ(1)λ(1) ∈ cdp(G) cannot

be a prime power whenever µ ∈ IBrp(G/K) with µ(1) > 1. Thus all irreducible

p-Brauer characters of G/K are linear. If G/K is a p′-group, then Irr(G/K) =

IBrp(G/K), so G/K is abelian, which means that K = G′. Otherwise, we see

that p = 3, G/K has a Sylow p-subgroup P/K of order p and a normal Hall

p′-subgroup CK/K. By [23, Theorem 5.5] we have that P/K � G/K and so

G/K = P/K×CK/K is abelian as CK/K ∼= C/Z is abelian and P/K is cyclic.

Therefore, K = G′ as required.
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Claim 4. If G′ is nonabelian simple, then C = Z(G) is a p′-group and Case

(a) of the theorem holds.

We have G′ ∩ C = Z = 1 and hence [G,C] ⊆ G′ ∩ C = 1, which implies that

C ⊆ Z(G). As C = CG(G′), we deduce that Z(G) ⊆ C, so C = Z(G) in this

case. Now by Claim 2, Z(G) is a p′-group. Recall that G/Z(G) is an almost

simple group with simple socle G′. If G = G′Z(G), then since G′ ∩ Z(G) = 1,

we must have that G = G′ × Z(G) and thus Case (a)(i) holds. If G/Z(G) is

not simple, then G/Z(G) ∼= PSL2(8) · 3 with p = 3 or G/Z(G) ∼= PSL2(pf ) with

5 ≤ pf ≤ 13 by Corollary 3.8 . These give rise to Cases (a)(ii) and (a)(iii),

respectively.

Claim 5. If G′ is not simple, then Case (b) holds.

Assume that G′ is nonsimple. Then G′ ∼= SL2(5) and p = 5. All statements

of Case (b) follow from Claim 2 except for the last one. As G/CG(G′) is an

almost simple group with simple socle G′/Z ∼= PSL2(5), by Corollary 3.8 we

have that either G/C ∼= PSL2(5) or G/C ∼= PGL2(5). If the latter case holds,

then we are done. If the former case holds, then clearly G/Z ∼= C/Z × G′/Z,
G′ ∩ C = Z and [G′, C] = 1, so G is a central product of G′ and C = CG(G′).

The final claim. In this final claim, we will show that if the pair (G, p)

satisfies the conclusion of the theorem, then σp(G) = 1.

Assume first that Case (a) holds. Then G′ is a nonabelian simple group with

σp(G
′) = 1 and Z(G) is a p′-group.

Now if Case (a)(i) holds, then G = G′ × Z(G). In this case, we have that

cdp(G) = cdp(G
′) by [24, Theorem 8.21], so σp(G) = σp(G

′) = 1. Assume that

G/Z(G) ∼= PSL2(8) ·3, G′ ∼= PSL2(8) and Z(G) is p′-group, where p = 3. Notice

that G/Z(G) = G′〈φ〉, where φ is a field automorphism of G′ of order 3. Using

GAP, cdp(G
′) = {1, 7, 9}; G′ has exactly one irreducible p-Brauer character

of degree 7 which is 〈φ〉-invariant and three irreducible p-Brauer characters of

degree 9 which are not invariant under φ. Moreover, by [24, Theorem 8.21],

IBrp(G
′ × Z(G)) = {θ × λ | θ ∈ IBrp(G

′), λ ∈ IBrp(Z(G))}.

Observe that all irreducible p-Brauer characters of Z(G) are G-invariant. Now

if λ ∈ IBrp(Z(G)) and θ ∈ IBrp(G
′) with θ(1) = 1 or 7, then θ×λ is G-invariant

and thus by [24, Theorem 8.11], θ×λ extends to G. If θ(1) = 9, then θ×λ is not

G-invariant and hence we must have that (θ×λ)G ∈ IBrp(G) as |G : G′Z(G)| =
3. Therefore, we conclude that cdp(G) = {1, 7, 33} = cdp(PSL2(8) · 3). With

similar argument, we can deduce that cdp(G) = cdp(PGL2(pf )) if G/Z(G) ∼=
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PGL2(pf ) with pf odd and 5 ≤ pf ≤ 13. Notice that in this case all irreducible

p-Brauer characters of PSL2(pf ) are PGL2(pf )-invariant.

Finally, assume that Case (b) holds. Then G′ ∼= SL2(5), p = 5 Z := CG(G′)∩
G′ = Z(G′) and either G is a central product of G′ and CG(G′) or G/CG(G′) ∼=
PGL2(5). Let L := G′CG(G′). In both cases, L is a central product of G′

and CG(G′). Writing IBrp(Z) = {1, ν}. Since G/Z has the structure as given

in (i) or (iii) of Case (a), we have that σp(G/Z) = 1. Since |G : L| ≤ 2,

it suffices to show that all irreducible p-Brauer characters in IBrp(L|ν) have

2-power degrees. For any χ ∈ IBrp(L), there exist λ ∈ IBrp(CG(G′)|ν) and

ϕ ∈ IBrp(G
′|ν) such that χ = λ · ϕ. Using GAP, we can see that all irreducible

p-Brauer characters in IBrp(G
′|ν) have 2-power degrees, so χ(1) = λ(1)ϕ(1) is a

power of 2. In particular, all irreducible p-Brauer characters in IBrp(L|ν) have

2-power degrees. The proof is now complete.

Proof of Theorem C. In view of [9, 12, 13], we can assume that G is nonsolv-

able. Let K be the last term of the derived series of G and let L be a maximal

normal subgroup of K. Then K/L is a nonabelian simple group and all irre-

ducible p-Brauer characters of K/L have degrees 1 or primes. By Corollary 3.6,

we have that K/L ∼= PSL2(p) with p ∈ {5, 7}. In particular, p is odd. Now the

result follows from Theorem B. The proof is now complete.
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[17] F. Lübeck, Small degree representations of finite Chevalley groups in defining character-

istic, LMS Journal of Computation and Mathematics 4 (2001), 135–169.

[18] G. Malle, Zeros of Brauer characters and the defect zero graph, Journal of Group Theory

13 (2010), no. 2, 171–187.

[19] G. Malle and A.E. Zalesskii, Prime power degree representations of quasi-simple groups,

Archiv der Mathematik 77 (2001), no. 6, 461–468.
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