
p-PARTS OF BRAUER CHARACTER DEGREES

GABRIEL NAVARRO, PHAM HUU TIEP, AND HUNG P. TONG-VIET

Abstract. Let G be a finite group and let p be an odd prime. Under certain
conditions on the p-parts of the degrees of its irreducible p-Brauer characters, we
prove the solvability of G. As a consequence, we answer a question proposed by
B. Huppert in 1991: If G has exactly two distinct irreducible p-Brauer character
degrees, then G is solvable. We also determine the structure of non-solvable groups
with exactly two irreducible 2-Brauer character degrees.

1. Introduction

In the late 1980’s and earlier 90’s there was considerable interest in studying the
degrees of the irreducible p-Brauer characters of finite p-solvable groups. For general
finite groups, however, not much was proven; partly because the knowledge of mod-
ular representation theory was not as it is nowadays, and partly due to the somehow
erratic behavior of the degrees of the representations in characteristic p.

For instance, an apparently innocent question by B. Huppert was left unsolved:
If all the non-linear irreducible p-Brauer characters have the same degree, where p
is odd, is G solvable? Huppert was of course aware that for p = 2, the irreducible
2-Brauer degrees of PGL2(q) are 1 and q − 1, whenever q = 9 or a Fermat prime, so
this was really a question for odd primes.

Although this paper started as an attempt to settle Huppert’s question, we soon
realized that the key in Huppert’s problem relied on the p-parts of the p-Brauer
character degrees. To start our discussion, suppose that we have fixed a maximal
ideal of the ring of algebraic integers containing the prime p, with respect to which
we calculate the irreducible p-Brauer characters ϕ ∈ IBrp(G) of every finite group G.
Let us denote cdp(G) = {ϕ(1) |ϕ ∈ IBrp(G)}.

In general, not much can be said about the degrees of p-Brauer characters of
arbitrary finite groups. However, p-Brauer character degrees display a slightly better

Date: February 4, 2014.
2000 Mathematics Subject Classification. Primary 20C20; Secondary 20D05, 20D10.
Key words and phrases. Brauer characters; solvable groups.
The authors are grateful to the referee for careful reading and helpful comments on the paper.
The research of the first author is supported by the Prometeo/Generalitat Valenciana, Proyectos

MTM2010-15296. The second author gratefully acknowledges the support of the NSF (grants DMS-
0901241 and DMS-1201374). The research of the third author is supported by a Startup Research
Fund from the College of Agriculture, Engineering and Science, the University of KwaZulu-Natal.

1



2 GABRIEL NAVARRO, PHAM HUU TIEP, AND HUNG P. TONG-VIET

behavior if we consider their p-parts. For instance, a theorem of G. Michler [M] asserts
that ϕ(1)p = 1 for all ϕ ∈ IBrp(G) (that is, p does not divide ϕ(1) for all ϕ ∈ IBrp(G))
if and only if G has a normal Sylow p-subgroup. Since cdp(G) = cdp(G/Op(G))
(because Op(G) is in the kernel of the irreducible p-modular representations), we see
that when dealing with p-Brauer character degrees, we may generally assume that p
divides some m ∈ cdp(G).

Theorem A. Let G be a finite group and let p be an odd prime. Suppose that the
degrees of all nonlinear irreducible p-Brauer characters of G are divisible by p.

(i) If p ≥ 5 then G is solvable.
(ii) If p = 3 and the p-parts of the degrees of non-linear irreducible p-Brauer char-

acters of G take at most two different values, then G is solvable.

We note that if G = PSL2(27) · 3, then we have that cd3(G) = {1, 9, 12, 27, 36},
which shows that Theorem A(i) fails for p = 3 and that Theorem A(ii) is best possible.
We should also mention that under the conditions of Theorem A, the prime 2 behaves
somehow in the opposite way: it is often the case that all non-linear irreducible 2-
Brauer characters of non-solvable groups have even degree; in fact, the number of
their 2-parts can be quite large (with the exception of M22 where all non-linear 2-
Brauer character degrees have the same 2-part).

As a consequence of Theorem A, we can answer B. Huppert’s question mentioned
before ([H, p. 27]).

Theorem B. Let G be a finite group and let p be an odd prime. Suppose that
cdp(G) = {1,m} with m > 1. Then G is solvable.

Since cd5(A5) = {1, 3, 5}, we see that Theorem B cannot be further generalized.

As we have already said, cd2(PGL2(q)) = {1, q − 1} whenever q = 9 or a Fermat
prime, showing that for p = 2, there are non-solvable groups satisfying the hypothesis
of Theorem B. But in fact, we have the following.

Theorem C. Let G be a non-solvable group with O2(G) = 1. Then cd2(G) = {1,m}
with m > 1 if and only if the following conditions hold:

(i) m = 2a for some a ≥ 2, q := 2a + 1 is either a Fermat prime or q = 9; and
(ii) G has a normal subgroup S ∼= PSL2(q), G/(S × Z(G)) ∼= C2, and G induces

the group of inner-diagonal automorphisms of S.

Finally, we mention that groups whose irreducible p-Brauer characters have prime
power degrees have recently received attention in [TW] and [TV].

2. Proof of Theorem A

Let G be a finite group and let p be a prime. We follow the notation in [I2] for
complex characters and in [N1] for p-Brauer characters. We write Irr(G) for the set
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of all complex irreducible characters of G, and cd(G) = {χ(1) |χ ∈ Irr(G)} for the set
of their degrees. Similarly, IBrp(G) is the set of all irreducible p-Brauer characters of
G (when a maximal ideal of the algebraic integers containing p has been fixed) and
cdp(G) = {ϕ(1) | ϕ ∈ IBrp(G)}. For an integer n ≥ 1, we denote the largest power of
p which divides n by np, the p-part of n. If N �G and λ ∈ IBrp(N) then IBrp(G|λ)
is the set of all constituents of the induced character λG in IBrp(G). If χ ∈ Irr(G),
then χ◦ is the restriction of χ to G◦, the set of all p-regular elements of G. The set of
all prime divisors of the order of G is denoted by π(G). Other notation is standard.

Proof of Theorem A. Let G be a counterexample with minimal order. We first
observe that if N �G, then cdp(G/N) ⊆ {1} ∪ pZ since cdp(G/N) ⊆ cdp(G).

Step 1. G = Op′(G).

Let H = Op′(G). Then H�G and G/H is a p′-group. It follows that IBrp(G/H) =
Irr(G/H) and so cdp(G/H) = cd(G/H). Since cdp(G/H) ⊆ {1}∪pZ, we see that the
degree of every non-linear (if any) complex irreducible character of G/H is divisible
by p, which forces cd(G/H) = {1}. In particular, G/H is an abelian p′-group. Note
that H also satisfies the same hypothesis that we have on G. Indeed, let θ ∈ IBrp(H)
with θ(1) > 1 and let ϕ ∈ IBrp(G|θ). As G/H is solvable, we have that ϕ(1)/θ(1)
divides |G/H| by [N1, Theorem 8.22] and thus θ(1)p = ϕ(1)p since |G/H| is coprime
to p. Now the minimality of |G| implies that G = H.

Step 2. Every Sylow p-subgroup of G is self-normalizing.

As the number of linear p-Brauer characters of G is |G : G′Op′(G)|, by Claim 1
we deduce that the trivial Brauer character 1G is the only linear p-Brauer character
of G. It follows that p | β(1) for all 1G 6= β ∈ IBrp(G). The result now follows from
[NT1, Theorem A].

Step 3. p = 3 and G has a composition factor which is isomorphic to PSL2(3
f ) with

f = 3a ≥ 3. In particular, we are done with the proof of Theorem A(i).

By way of contradiction, suppose that either p ≥ 5 or p = 3 and G has no compo-
sition factor which is isomorphic to PSL2(3

f ) for some f = 3a and a ≥ 1. Then G
satisfies the hypothesis of Theorem 1.1 in [GMN] and thus G is solvable, which is a
contradiction.

Step 4. Set p = 3. Now we reach the final contradiction by showing that IBr3(G)
contains three characters α, β, and γ with

α(1)3 > β(1)3 > γ(1)3, γ(1) > 1.

By Step 3, we may assume that G has a chief factor N/K = S1 × . . . × Sn with
Si ∼= S = PSL2(3

f ) and f = 3a ≥ 3. We will produce three irreducible 3-Brauer
characters of G/K with desired properties. Hence without loss we may assume that
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K = 1 and N = S1 × · · · × Sn is a minimal normal subgroup of G. Firstly, let St
denote the Steinberg character of S and consider the character St× . . .×St of degree
3fn of N . By the main result of [F], this character extends to G and is irreducible
modulo 3. Thus we obtain α ∈ IBr3(G) with α(1) = 3fn.

Let V = F2

3 denote the natural module for SL2(3
f ). Then

Sym2(V )⊗ Sym2(V )(3) ⊗ Sym2(V )(3
2) ⊗ · · · ⊗ Sym2(V )(3

(f−3)/2)

is an irreducible S-module of dimension 3(f−1)/2, with character say β1. Consider the
Brauer character

β0 = β1 × 1S2 × · · · × 1Sn

of N . Then the inertia group IG(β0) is contained in M := NG(S1) and contains
CS1, with C := CG(S1). Note that M/CS1 ≤ Out(S1) ∼= C2f is cyclic (since f is
odd). Hence, working in IG(β0)/C, we see that β0 extends to IG(β0). Now the Clifford
correspondence yields β ∈ IBr3(G|β0) with β(1) = 3(f−1)/2bn, where b := |M : IG(β0)|
divides 2f .

Next, V ⊗ V (3) is also an irreducible S-module of dimension 4, with character say
γ1. Considering the Brauer character

γ0 = γ1 × 1S2 × · · · × 1Sn

of N and arguing as above, we obtain γ ∈ IBr3(G|γ0), where γ(1) = 4cn > 1 and
c := |M : IG(γ0)| divides 2f .

Suppose for the moment that a ≥ 2 and so f ≥ 9. Then b3, c3 ≤ f < 3(f−3)/2,
whence

γ(1)3 = (4cn)3 < n3 · 3(f−3)/2 < β(1)3 = (3(f−1)/2bn)3 < 3f−2n < 3fn = α(1)3,

and so we are done.
Finally, assume that f = 3. Note that β1 and γ1 are both fixed by the diagonal

automorphism of S1, but none of them is fixed by the field automorphism (of order
3) of S1. It follows that they have the same inertia group in M/C, whence IG(β0) =
IG(γ0) and b = c. Recall also that b|2f = 6. Hence,

γ(1)3 = (4cn)3 = (bn)3 < β(1)3 = (3bn)3 ≤ 9n < 27n = α(1)3,

and we are again done.

3. Proof of Theorem B

Now we are ready to establish Theorem B.

Proof of Theorem B. Assume first that p does not divide m. By [M, Theorem 5.5],
G has a normal Sylow p-subgroup P. Then cdp(G) = cdp(G/P ) = cd(G/P ) since
G/P is a p′-group. It follows that |cd(G/P )| = 2 and thus G/P is solvable by
[I2, Corollary 12.5], hence G is solvable. Assume now that p | m and so mp = pa
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with a ≥ 1. It follows that G is solvable by applying Theorem A. The proof is now
complete. �

Solvable groups with two Brauer degrees were studied by F. Bernhardt in the
earlier 90’s. In B. Huppert’s survey [H], a result by Bernhardt concerning their
derived length is mentioned (although it seems that this result has never appeared
in print). In any case, we take this opportunity to prove something that perhaps has
not been noticed until now.

Theorem 3.1. Let G be a finite group and let p be an odd prime. Suppose that
cdp(G) = {1,m} with m > 1 and Op(G) = 1. If P ∈ Sylp(G), then P is cyclic.

Recall that if ϕ ∈ IBrp(G), then ker(ϕ) means the kernel of any modular rep-
resentation affording ϕ. We need the following elementary and well-known lemma.

Lemma 3.2. We have that

Op(G) =
⋂

ϕ∈IBrp(G)

ker(ϕ) .

Proof. If L is the intersection on the right hand side above and τ ∈ IBrp(L), then
τ lies under some γ ∈ IBrp(G) by [N1, Corollary 8.7]. Then τ = 1L and L is a
p-group by [N1, Corollary 2.10]. Also, Op(G) is contained in every kernel by [N1,
Lemma 2.32]. �

Proof of Theorem 3.2. If p does not divide m, then G has a normal Sylow p-
subgroup by Michler’s theorem [M, Theorem 5.5], and by the hypothesis, we deduce
that G is a p′-group. In this case, everything is clear. So we may assume that p|m.
By Theorem B, we know that G is solvable. Suppose that q 6= p is a prime dividing
m. By the [N2, Corollary], we have that G has a normal q-complement. Hence, if π
is the set of primes dividing mp′ , it follows that G has a normal π-complement K.
Hence G/K is a π-group and K is a π′-group. Let τ ∈ IBrp(K) be non-linear. Since
K is p-solvable, we have that τ(1) divides |K| (for instance, use [N1, Theorem 10.1]).
So does the determinantal order o(τ). (Recall that the determinantal order o(τ) is the
order of the homomorphism Λ : K → F× that affords the Brauer character det(τ),
where F is an algebraically closed field of characteristic p, in the group Hom(K,F×).)
Let T be the stabilizer of τ in G. By [N1, Theorem 8.23], we have that τ extends
to some γ ∈ IBrp(T ). Also, γG ∈ IBrp(G) by the Clifford correspondence. Thus
m = τ(1)|G : T |, and we deduce that mp = mπ′ = τ(1). Since G/K is a p′-group,
then we may assume that K = G and that m = pa > 1 is a power of p.

Now, let L = Op(G′). We claim that L is abelian. By Lemma 3.2, it suffices to
show that L′ is contained in ker(ϕ) for every ϕ ∈ IBrp(G). This is clear if ϕ(1) = 1,
so suppose that ϕ(1) = pa with a > 0. Now let χ ∈ Bp(G) be an Isaacs lifting of ϕ
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(see [I1] for the definition of Bp(G)). Since by definition χ is induced from a p′-degree
character and χ(1) has p-power degree, then we conclude that χ is monomial. Hence,
let λ ∈ Irr(H) be linear such that λG = χ. Now, consider the Brauer character (1H)G.
By Nakayama’s Lemma [N1, Lemma 8.4], we have that the trivial Brauer character
1G is a constituent of the Brauer character (1H)G. Since |G : H| = pa, it follows that
all the irreducible Brauer constituents of (1H)G are necessarily linear. Thus ((1H)G)G′
is a multiple of the trivial Brauer character 1G′ . By Mackey ([N1, Problem 8.5]), it
follows that (1H∩G′)

G′ is also a multiple of 1G′ . Hence, if z ∈ G′ is p-regular, then we
have that

(1H∩G′)
G′(z) = (1H∩G′)

G′(1) .

By the induction of Brauer characters formula, we deduce that coreG′(H ∩ G′) con-
tains every p-regular element of G′. Hence Op(G′) ≤ H and Op(G′)′ ≤ H ′. Then
Op′(G′)′ ≤ coreG(ker(λ)) = ker(χ). This proves the claim. Since Op(G) = 1, we see
that L is a p′-group. Now, if R/G′ is the Sylow p-subgroup of G/G′, we have that
R/L is a normal Sylow p-subgroup of G/L, so we deduce that G has p-length one.

Now, notice that M = Op′(G) is abelian, because all of its irreducible charac-
ters have p′-degree but lie below a p-power degree Brauer character. Let N/M =
Op(G/M). We have that C = CM(P ) < M , because otherwise, Op(G) > 1. Also
CP (M) ≤ Op(N) = 1. Notice that P acts faithfully on M/C, because if Q ≤ P cen-
tralizes M/C, then [M,Q] ≤ C, [M,Q,Q] = 1 and therefore [M,Q] = 1 by coprime
action and Q ≤ CP (M) = 1.

Suppose that 1 6= λ ∈ Irr(M/C), and let T < N be the stabilizer of λ in N .
(We have that CM/C(P ) = 1 and therefore M/C has no non-trivial P -invariant
irreducible characters.) Then λ extends to some ν ∈ IBr(T ) (use, for instance, [N1,
Theorem 8.11]), and then δ = νN ∈ IBrp(N) has p-power degree, not 1. Let ϕ ∈
IBrp(G|δ). Since ϕ has p-power degree, then ϕN ∈ IBrp(N) by [N1, Theorem 8.30].
It follows therefore that |N : T | = pa, and we conclude that the faithful action of P
on Irr(M/C) is half-transitive. Applying the Isaacs-Passman theorem [IP], we now
conclude that P is cyclic if p > 2. �

We remark that if p = 2, then already the group G = (S3×S3) : C2 has irreducible
Brauer degrees {1, 4} and no cyclic Sylow 2-subgroup.

To finish this section, we remind the reader that the groups having exactly one
non-linear irreducible Brauer character (a much stronger condition than the one in
Theorem B) have recently been completely classified in [DN].

4. Proof of Theorem C

The first step in classifying non-solvable groups with two distinct degrees of irre-
ducible 2-Brauer characters is provided by the following statement:
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Proposition 4.1. Let G be a non-solvable group with cd2(G) = {1,m} for some
m > 1 and let S be a non-abelian composition factor of G. Then S cannot satisfy
any of the following two conditions:

(i) For any group H with S �H ≤ Aut(S), there exist 2-Brauer characters ϕ, ψ ∈
IBr2(H) of distinct degrees and both not containing S in their kernels.

(ii) There exist non-principal 2-Brauer characters α, β ∈ IBr2(S) and a set π of
primes such that α(1)π > β(1)π · |Out(S)|π.
If in addition S is a finite simple group of Lie type in characteristic 2, then S ∼= A5

or A6.

Proof. By modding out a suitable normal subgroup of G, we may assume that G has
a minimal normal subgroup N = S1 × . . .× Sn, where Si ∼= S for all i.

Suppose first that S satisfies (i). Denoting M := NG(S1), C := CG(S1) and
H := M/C, we see that S1

∼= NC/C � H and CH(NC/C) = 1. According to
(i), there are ϕ, ψ ∈ IBr2(H) of distinct degrees and both not containing S in their
kernels. By inflation, we can also view ϕ and ψ as irreducible Brauer characters of
M . Now, let 1S1 6= α1 be an irreducible constituent of ϕS1 and let

α := α1 × 1S2 × . . .× 1Sn ∈ IBr2(N).

Since α1 is non-trivial, it follows that the inertia group IG(α) of α in G is contained
in M . Now, ϕ lies over α, and by the Clifford correspondence we deduce that ϕG ∈
IBr2(G), of degree |G : M |ϕ(1) > 1. Similarly, we obtain ψG ∈ IBr2(G) of degree
|G : M |ψ(1) > 1. But this is a contradiction since ϕ(1) 6= ψ(1).

Suppose next that S satisfies (ii). We will show that S then satisfies (i). To this
end, consider anyH as in (i), any ϕ ∈ IBrp(H) that lies above α, and any ψ ∈ IBr2(H)
that lies above β. Note that H/S ≤ Out(S) is solvable. Hence by Swan’s theorem
[N1, Theorem 8.22], ϕ(1) = aα(1) with a dividing |Out(S)|. Similarly, ψ(1) = bβ(1)
with b dividing |Out(S)|. By the choice of α and β, both ϕ and ψ do not contain S
in their kernels, and

ϕ(1)π ≥ α(1)π > β(1)π · |Out(S)|π ≥ β(1)π · bπ = ψ(1)π.

Thus ϕ(1) 6= ψ(1), as desired.

Finally, suppose that S is a simple group of Lie type in characteristic 2 and S 6∼= A5,
A6. Note that 2F4(2)′ satisfies (i) (with ϕ(1) = 26 and ψ(1) = 246, cf. [JLPW]),
so we also have that S 6∼= 2F4(2)′. Let St denote the Steinberg character of S. It
is well known that α := St0 is irreducible, and moreover, according to the main
result of [F], γ := St × . . . × St ∈ Irr(N) extends to G. It follows that IBr2(G)
contains an irreducible character of degree St(1)n > 1, whence m = St(1)n is a power
of 2. Consider any non-principal δ ∈ IBr2(S) and any χ ∈ IBr2(G) lying above
δ × . . .× δ ∈ IBr2(N). By the assumption on G we must have that χ(1) = m and so
δ is also a 2-power. We have shown that the degree of any δ ∈ IBr2(S) is a 2-power.
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Hence by [TW, Theorem 1.1], S ∼= SL2(q) with q = 2f ≥ 8, 2B2(q) with q = 2f ≥ 8,
or Sp4(q) with q = 2f ≥ 4. In each of these cases, we have that α(1) = q, q2, or q4.
Accordingly, we can find β ∈ IBr2(S) of degree 2, 4, or 4. Also, |Out(S)| = f , f , or
2f . Now setting π = {2}, we see that α(1)π > β(1)π · |Out(S)|π. Thus S satisfies
(ii), a contradiction. �

Next we classify the possible non-abelian composition factors of non-solvable groups
with two distinct degrees of irreducible 2-Brauer characters.

Theorem 4.2. Let S be a finite non-abelian simple group, which does not satisfy
any of the two conditions (i) and (ii) listed in Proposition 4.1. Suppose in addition
that S is not isomorphic to any simple group of Lie type in characteristic 2. Then
S ∼= PSL2(q) with q = 2a + 1 ≥ 17 a Fermat prime.

Proof. Case 1: S = An with n ≥ 7.
Consider the irreducible 2-Brauer characters α, β of Sn labeled by the partitions

(n− 1, 1), respectively (n− 2, 2). As shown in the proof of [GT2, Lemma 6.1], both
α and β remain irreducible over S, furthermore,

α(1) ≤ n− 1 < (n2 − 5n)/2 ≤ β(1)

(for small n this can be checked using [JLPW]). Since Aut(S) ∼= Sn, it follows that
S satisfies condition (i) of Proposition 4.1.

Case 2: S is a sporadic finite simple group; in particular |Out(S)| ≤ 2.
Suppose first that S = M12, M22, M24, J2, HS, Ru, Suz, or Co3. Using [JLPW] and

[ModAt] we can find α, β ∈ IBrp(S) satisfying 4.1(ii) with (α(1), β(1)) equal to

(10, 44), (34, 98), (44, 120), (36, 84), (20, 56), (28, 376), (142, 638), (22, 230),

respectively.
Next assume that S = Co1. Then it is well known that IBr2(S) contains a character

β of degree 24. Also, the subgroup Co2 of Co1 contains an irreducible complex
character γ of 2-defect 0 of degree 218 · 7. Choosing an irreducible constituent α in
the socle of (γ◦)S, we see that α(1) ≥ γ(1), whence (α, β) satisfies 4.1(i).

Suppose that S = BM. According to [J], IBr2(S) contains a character β of degree
4370. Also, the subgroup F4(2) of BM contains an irreducible complex character γ of
2-defect 0 of degree 224. Choosing an irreducible constituent α in the socle of (γ◦)S,
we see that α(1) ≥ γ(1), whence (α, β) satisfies 4.1(i).

For all the other 16 sporadic simple groups, we can choose α = χ◦, where χ ∈ Irr(S)
has 2-defect 0 and 1S 6= β ∈ IBr2(S) of smallest possible degree as found in [J]. It is
easy to check that (α, β) satisfies 4.1(ii) (with π chosen to be the set of all primes).

Case 3. We may now assume that S is a simple group of Lie type in characteristic
r > 2, defined over Fq with q = rf .

Then we can find a simple, simply connected algebraic group G in characteristic r
and a Frobenius endomorphism F : G → G such that S = G/Z(G) for G := GF .
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Let the pair (G∗, F ∗) be dual to (G, F ) and let G∗ := (G∗)F ∗ . We refer the reader to
[C] and [DM] for basics on the Deligne-Lusztig theory of complex representations of
finite groups of Lie type.

Recall that a primitive prime divisor ppd(b, n) for b, n ≥ 2 is a prime divisor of
bn − 1 which does not divide

∏n−1
i=1 (bi − 1), cf. [Z]. In most of the cases, we will find

some primitive prime divisors `i > 2 and some semisimple `i-element 1 6= si ∈ G∗,
such that `i is coprime to both the order of the center of the universal covering of G∗
and |G∗ : [G∗, G∗]|, for i = 1, 2. The first condition ensures that CG∗(si) is connected,
whence one can consider the semisimple character χi = χsi ∈ Irr(G) labeled by the
G∗-conjugacy class of si. The second condition implies that si ∈ [G∗, G∗], whence χi
is trivial at Z(G) and so can be viewed as an irreducible character of S, (see e.g [NT2,
Lemma 4.4]). Since `i > 2, it follows from [HM, Proposition 1] that χ◦i ∈ IBrp(S).
Recall also that χi(1) = |G∗ : CG∗(si)|r′ . We will choose `1, `2 so that `1 divides χ2(1)
but not χ1(1) · |Out(S)|. Setting α = χ◦2, β = χ◦1, and π = {`1}, we will then see that
S satisfies condition (ii) of Proposition 4.1.

We first illustrate this idea on the case S = PSLn(q) with n ≥ 4. Then we choose
`1 = ppd(r, nf) > nf and `2 = ppd(r, (n − 1)f) > (n − 1)f . Note that if `2 ≤ n,
then in fact `2 = n, in which case, since n > 2, we have that `2 - (q − 1) and
so gcd(n, q − 1) = 1. In this exceptional case, S ∼= G ∼= G∗ ∼= SLn(q), and by
interchanging G with G∗ and G with G∗, we can achieve that CG∗(x) is connected for
any semisimple element x ∈ G∗. In either case, by [MT, Lemma 2.4] we can find si
as above, with |CG∗(s1)| = (qn − 1)/(q − 1) and |CG∗(s2)| = qn−1 − 1. Furthermore,
|Out(S)| divides 2f · gcd(n, q − 1) and so it is coprime to `1. Thus (s1, s2) has the
aforementioned properties, and so S satisfies 4.1(ii).

Suppose now that S = PSp2n(q), Ω2n+1(q), or PΩε
2n(q), where n ≥ 3 and ε = ±.

In the first two cases, using [MT, Lemma 2.4] we can choose `1 = ppd(r, 2nf),
`2 = ppd(r, 2(n − 1)f), |CG∗(s1)| = qn + 1, and |CG∗(s2)| = q(qn−1 + 1)(q2 − 1). If
S = PΩ−2n(q), we can choose the same `1, `2 and get |CG∗(s1)| = qn + 1, |CG∗(s2)| =
(qn−1 +1)(q−1). Assume that S = PΩ+

2n(q). Then, again using [MT, Lemma 2.4] we
can choose `1 = ppd(r, 2(n− 1)f) and |CG∗(s1)| = (qn−1 + 1)(q + 1). Furthermore,

(`2, |CG∗(s2)|) =

{
(ppd(r, nf), qn − 1), n odd,
(ppd(r, (n− 1)f), (qn−1 − 1)(q − 1)), n even.

Assume that S = PSUn(q) with n ≥ 5 (note that the case PSU4(q) ∼= PΩ−6 (q) has
already been considered). Using [MT, Lemma 2.3] we can choose

(`1, `2) =

{
(ppd(r, 2nf), ppd(r, 2(n− 2)f)), n odd,
(ppd(r, 2(n− 1)f), ppd(r, 2(n− 3)f)), n even.
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Suppose that S = G2(q),
2G2(q),

3D4(q), F4(q), E6(q),
2E6(q), E7(q), or E8(q).

Then using [MT, Lemma 2.3] we can choose `i = ppd(r,mif) for i = 1, 2, with

(m1,m2) = (6, 3), (6, 1), (12, 6), (12, 8), (12, 9), (12, 18), (18, 14), (30, 24),

respectively. In all the above cases, we have seen that S satisfies 4.1(ii).

Assume that S = PSp4(q) with q ≥ 3. Then according to [W, Theorem 3.1], there
are α, β ∈ IBr2(S) with α(1) = q(q − 1)2/2 and β(1) = (q2 − 1)/2. Hence S satisfies
4.1(ii) with π = {r}.

Suppose now that S = PSU3(q). It is well known (see e.g. [Ge]) that there is
α ∈ IBr2(S) with α(1) = q(q − 1). Choosing `2 = ppd(r, 6f) and arguing as above,
we obtain β = χ◦2 ∈ IBr2(S) of degree (q2 − 1)(q + 1). Thus S satisfies 4.1(ii) with
π = {r}.

Next suppose that S = PSL3(q). It is well known (see e.g. [GT1]) that there is
α ∈ IBr2(S) with α(1) = q(q + 1). Choosing `2 = ppd(r, 3f) and arguing as above,
we obtain β = χ◦2 ∈ IBr2(S) of degree (q2 − 1)(q − 1). Thus S satisfies 4.1(ii) with
π = {r}.

Finally, we consider the case S = PSL2(q). Suppose that q − 1 is not a 2-power.
Then, according to [B], there are α, β ∈ IBr2(S) with α(1) = (q − 1)/2 and β(1) =
q + 1. It is straightforward to check that S satisfies 4.1(ii) for a suitably chosen π.
Hence we conclude that q = 2a + 1 and so q ≥ 17 is a Fermat prime (note that
PSL2(5) ∼= SL2(4) and PSL2(9) ∼= Sp4(2)′). �

Proof of Theorem C. Suppose G is any non-solvable group with O2(G) = 1 and
cd2(G) = {1,m}, where m > 1. Then G admits a non-abelian composition factor
S. By Proposition 4.1 and Theorem 4.2, S ∼= PSL2(q) with q = 2a + 1 ≥ 5 either
a Fermat prime or 9. Letting L := G(∞), without loss we may assume that there is
a chief factor L/K ∼= Sn of G (for some n). It is well known that IBr2(S) consists
of 1S, exactly two characters α1, α2 of degree (q − 1)/2 = 2a−1, and 2a−2 characters
β1, . . . , β2a−2 of degree q − 1 (see e.g. [B]). Furthermore, Out(S) has order 4 if q = 9
and 2 otherwise.

Step 1. First we show that n = 1, i.e. L/K ∼= S, and m = q − 1 = 2a.
Indeed, working in G/K instead of G, we may assume that G has a minimal normal

subgroup N = S1 × . . .× Sn with Si ∼= S. Consider the character

α = α1 × 1S2 × . . .× 1Sn ∈ IBr2(N).

Then the inertia subgroup J := IG(α) contains C1 := CG(S1) (as a normal subgroup)
and is contained in M := NG(S1). In particular, J/C1S1 ≤ M/C1S1 ≤ Out(S) is a
2-group. Working in M/C1 and using Green’s theorem [N1, Theorem 8.11], we see
that α extends to a character α̂ of J . Also, since S has exactly two irreducible Brauer
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characters of degree (q−1)/2, c := |M : J | ≤ 2. Hence by the Clifford correspondence,
α̂G ∈ IBr2(G) and has degree 2a−1cn. By the hypothesis, m = 2a−1cn.

On the other hand, IBr2(G) also contains a character lying above β1×β1×. . .×β1 ∈
IBr2(N), of degree divisible by β1(1)n = 2an. In particular,

2an ≥ 2a−1cn = m ≥ 2an.

Since a ≥ 2, it follows that n = 1, c = 2, and m = 2a.

Step 2. Let C � G be such that C/K = CG(L/K), and let τ ∈ IBr2(C) be any
character of degree > 1. Then τ extends to CL.

Suppose that the inertia subgroup ICL(τ) of τ in CL has index d in CL. Then, by
the Clifford correspondence, IBr2(CL) contains a character of degree divisible by d.
In turn, the same is true for IBr2(G) since CL � G. Hence d divides m = 2a. But
ICL(τ) � C and CL/C ∼= S ∼= PSL2(q) has no proper subgroup of index dividing 2a.
It follows that d = 1, i.e. τ is CL-invariant.

By [N1, Theorem 8.28], the modular character triple (CL,C, τ) is isomorphic
(as defined in [N1, Definition 8.25]) to a modular character triple (Y, Z, λ), where
Y/Z ∼= CL/C ∼= S, Z ≤ Z(Y ) is of odd order, and λ is a faithful linear character
of Z. If q 6= 9, then since the Schur multiplier of S has order 2, we must have that
Y = Y (∞) ×Z with Y (∞) ∼= S. In this case, λ extends to Y and so τ extends to CL.
The same is true when q = 9, unless Y (∞) ∼= 3A6. In the latter case, any irreducible
Brauer character of Y lying above λ has degree divisible by 3. It follows that any
irreducible Brauer character µ of CL lying above τ also has degree divisible by 3. But
then any irreducible Brauer character ν of G lying above µ also has degree divisible
by 3, contradicting the fact that such ν must have degree m = 2a.

Step 3. C, and so K, is abelian of odd order.
Suppose that IBr2(C) contains a character τ of degree > 1. By Step 3, τ extends

to a character ϕ of CL. Hence, if we view β1 as an irreducible Brauer charac-
ter of CL/C ∼= S, then by [N1, Corollary 8.20], ϕβ1 ∈ IBr2(CL). It follows that
IBr2(G|ϕβ1) contains a character of degree ≥ (ϕβ1)(1) = (q − 1)τ(1) > m, a contra-
diction. We have shown that cd2(C) = {1}. Furthermore, O2(C) = 1 as O2(G) = 1.
It follows that C is abelian of odd order.

Step 4. K = 1 and CL = C × L ∼= C × S.
Consider any λ ∈ IBr2(K) = Irr(K). Arguing as in Step 2, we see that λ extends

to L. But L = G(∞) is perfect, hence λ = 1C . Thus K = 1, L ∼= S, C∩L ≤ Z(L) = 1,
whence CL = C × L.

Step 5. C = Z(G), G/CL ∼= C2, and G induces the group of inner-diagonal
automorphisms of S.

Consider any µ ∈ IBr2(C) = Irr(C) and the character βj ×µ ∈ IBr2(CL) of degree
q − 1 = m. Since any member of IBr2(G|βj × µ) must have degree m, we see that
βj×µ is G-invariant. In particular, G fixes every irreducible character of the abelian
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group C, and so C ≤ Z(G). On the other hand, Z(G) ≤ CG(L) = C, whence
C = Z(G). We also have that G/CL ↪→ Out(S) and so G/CL is a 2-group.

Next we consider the character α1 × 1C ∈ IBr2(CL) of degree (q − 1)/2. By
Green’s theorem, it extends to its inertia group T in G, and so we get an irreducible
Brauer character of degree |G : T | · m/2. Certainly, this degree must be equal to
m, and so |G : T | = 2. Now if q 6= 9, then |Out(S)| = 2 and we conclude that
G/CL ∼= Out(S) ∼= C2.

Suppose that q = 9, and so Out(S) ∼= C2
2 . We already know that G/CL has order

at least 2, and G fixes each βj. Note that each of the two involutions 21 and 23 (in
the notation of [Atlas]) of Out(S) interchanges β1 and β2. Hence G/CL = 〈22〉. Thus
in all cases G induces the group of inner-diagonal automorphisms of S.

We have proved the ‘only if’ direction of Theorem C.

Step 6. The ‘if’ direction of Theorem C holds.
Suppose G has the structure described in Theorem C. Then G interchanges α1 and

α2 (the two irreducible Brauer characters of degree (q − 1)/2 of S), and fixes all the
other irreducible Brauer characters of S (of degree 1 and q− 1). Since G/Z(G)S has
order 2 and Z(G) is central of odd order, it is easy to check that cd2(G) = {1, q− 1}.

We have completed the proof of Theorem C.
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E-mail address: gabriel.navarro@uv.es

Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
E-mail address: tiep@math.arizona.edu

School of Mathematics, Statistics and Computer Science, University of KwaZulu-
Natal, Pietermaritzburg 3209, South Africa

E-mail address: Tongviet@ukzn.ac.za


	1. Introduction
	2. Proof of Theorem A
	3. Proof of Theorem B
	4. Proof of Theorem C
	References

