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Chapter 1

Introduction: Uniform integrability

1.1 Definitions

Throughout these notes, unless stated otherwise, all measures are of bounded variation and

countably additive. In particular (Ω, Σ, µ) will denote a probability space.

Recall that a subset K of L1(µ) is called uniformly integrable if

lim
c→∞

sup

{∫
[|f |≥c]

|f | dµ : f ∈ K
}

= 0.

That is given ε > 0 there is a cε > 0 so that for each f ∈ K and each c ≥ cε we have∫
[|f |≥c]

|f | dµ < ε.

Alternatively A subset K of L1(µ) is uniformly integrable if and only if it is L1–bounded

and for each ε > 0 there is a δ > 0 so that sup
{∫

A
|f | dµ : f ∈ K

}
< ε for all A ∈ Σ with

µ(A) < δ.

In order to establish the equivalence of the two notions above, first note that for all measur-

able A, f ∈ K, c > 0 we have∫
A

|f | dµ =

∫
A∩[|f |<c]

|f | dµ +

∫
A∩[|f |≥c]

|f | dµ ≤ cµ(A) +

∫
[|f |≥c]

|f | dµ.

Fix ε > 0 and choose c0 > 0 so that sup
{∫

[|f |≥c]
|f | dµ : f ∈ K

}
< ε

2
whenever c ≥ c0. Then

5



6 CHAPTER 1. INTRODUCTION: UNIFORM INTEGRABILITY

for all f ∈ K we have ∫
Ω

|f | dµ ≤ c0µ(Ω) +

∫
[|f |≥c0]

|f | dµ ≤ c0 +
ε

2
.

and thus K is L1 bounded. Now let 0 < δ < ε
2c0

. Then for all measurable A with µ(A) < δ

and all f ∈ K we have∫
A

|f | dµ ≤ c0µ(A) +

∫
[|f |≥c0]

|f | dµ <
ε

2
+

ε

2
= ε.

To establish the converse, fix ε > 0 and choose δ > 0 so that sup
{∫

A
|f | dµ : f ∈ K

}
< ε

whenever A is measurable with µ(A) < δ. Let M = sup
{∫

Ω
|f | dµ : f ∈ K

}
and choose

c0 > 0 so that M
c0

< δ. Then for all f ∈ K and all c ≥ c0 we have

µ([|f | ≥ c]) ≤ 1

c

∫
[|f |≥c]

|f | dµ ≤ M

c0

< δ.

So
∫

[|f |≥c]
|f | dµ < ε and so we are done.

1.2 The theorem of De La Vallée Poussin

One characterization of uniformly integrable sets is an old theorem that finds its roots in

Harmonic Analysis and Potential theory and it is due to De La Vallée Poussin.

Theorem 1.1 (De La Vallée Poussin) A subset K of L1(µ) is uniformly integrable if and

only if there is a non-negative and convex function Q with limt→∞
Q(t)

t
= ∞ so that

sup

{∫
Ω

Q(|f | ) dµ : f ∈ K
}

< ∞ .

Proof. Suppose that K is a uniformly integrable subset of L1(µ). We will construct a

non-negative and non-decreasing function q that is constant on [n, n + 1) for n = 0, 1, . . .

with limt→∞ q(t) = ∞ and we will set Q(x) =
∫ x

0
q(t) dt for x > 0. Use the hypothesis to

choose a subsequence (cn) of the positive integers so that

sup

{∫
[|f |≥cn]

|f | dµ : f ∈ K
}

<
1

2n
∀n = 1, 2, . . .
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Then for each f ∈ K and all n = 1, 2, . . . we have

∫
[|f |≥cn]

|f | dµ =
∞∑

m=cn

∫
[m≤|f |<m+1]

|f | dµ

≥
∞∑

m=cn

mµ([m ≤ |f | < m + 1])

≥
∞∑

m=cn

µ([|f | ≥ m]) .

So for all f ∈ K we have

∞∑
n=1

∞∑
m=cn

µ([| f |≥ m]) ≤ 1 .

Now for m = 1, 2, . . . let qm be the number of the positive integers n, for which cn ≤ m.

Then qm ↗∞. Furthermore observe that

∞∑
n=1

∞∑
m=cn

µ([|f | ≥ m]) =
∞∑

k=1

qkµ([|f | ≥ k]) .

Let q0 = 0 and define q(t) = qn if t ∈ [n, n + 1) for n = 0, 1, 2, . . . . Then if Q(x) =
∫ x

0
q(t) dt

we have

∫
Ω

Q(|f | ) dµ =
∞∑

n=0

∫
[n≤|f |<n+1]

Q(|f | ) dµ

≤
∞∑

n=0

(
n∑

m=0

qm

)
· µ ([n ≤ |f | < n + 1])

= q0 · µ([0 ≤ |f | < 1]) + (q0 + q1) · µ([1 ≤ |f | < 2]) + · · ·

=
∞∑

n=0

qnµ([|f | ≥ n])

≤ 1.

So sup
{∫

Ω
Q(| f |) dµ : f ∈ K

}
< ∞.
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To see that Q is convex, fix 0 ≤ x1 < x2. We then have

Q

(
1

2
(x1 + x2)

)
=

∫ 1
2
(x1+x2)

0

q(t) dt

=

∫ x1

0

q(t) dt +

∫ 1
2
(x1+x2)

x1

q(t) dt

≤
∫ x1

0

q(t) dt +
1

2

∫ 1
2
(x1+x2)

x1

q(t) dt +
1

2

∫ x2

1
2
(x1+x2)

q(t) dt

=
1

2

∫ x1

0

q(t) dt +
1

2

∫ x2

0

q(t) dt

=
1

2
(Q(x1) + Q(x2)) .

Finally observe that

Q(x) =

∫ x

0

q(t) dt ≥
∫ x

x
2

q(t) dt ≥ x

2
q(

x

2
)

and thus Q(x)
x
≥ 1

2
q(x

2
) →∞ as x →∞.

We now prove the converse. Let M = sup
{∫

Ω
Q(|f | ) dµ : f ∈ K

}
. Let ε > 0 and choose

c0 > 0 so that Q(t)
t

> M
ε

whenever t ≥ c0. Then for f ∈ K and c ≥ c0 we have that

|f | < ε
M

Q(|f | ) on the set [|f | ≥ c]. Thus∫
[|f |≥c]

|f | dµ ≤ ε

M

∫
[|f |≥c]

Q(|f | ) dµ ≤ ε

M
M = ε

and so we are done.

1.3 The Dunford-Pettis theorem

The well known theorem of Dunford and Pettis which states that, a subset K of L1(µ) is

uniformly integrable if and only if it is relatively weakly compact, gives some deep insight

to the notion of uniform integrability. Our proof of this theorem will more or less be a

combination of those in [3] and [2].
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1.3.1 The space Σ (µ)

Define a (pseudo)metric on the σ-algebra Σ by d (A, B) = µ (A4B) for all A, B ∈ Σ. It is

clear that d (A, B) = µ (A4B) = µ (B 4 A) = d (B, A) and

d (A, B) + d (B, C) = µ (A4B) + µ (B 4 C)

≥ µ ((A4B) ∪ (B 4 C))

= µ (ABc ∪ AcB ∪BCc ∪BcC)

= µ (Bc (A ∪ C) ∪B (AC)c)

≥ µ (Bc (A4 C) ∪B (A4 C))

= µ (A4 C)

= d (A, C) .

Further, the (pseudo)metric space (Σ (µ) , d) is a complete one, because the map A 7−→ χA

is an isometry Σ (µ) → L1 (µ) onto the closed set of all the characteristic functions (or more

directly, if (En) is a Cauchy sequence in Σ (µ) then En → lim sup En = lim inf En, µ-almost

surely).

Also notice that if λ is an absolutely continuous measure with respect to µ, then λ is a

continuous real valued function on the (pseudo)metric space Σ (µ), for if En → E in Σ (µ)

then both µ (E \ EEn) → 0 and µ (En \ EEn) → 0 and so

|λ (En)− λ (E)| = |λ (En)− λ (EEn) + λ (EEn)− λ (E)|

≤ λ (En \ EEn) + λ (E \ EEn) → 0.

It is also noteworthy that the set-theoretic operations of union, intersection, symmetric

difference and complementation are continuous.

Theorem 1.2 (Vitali-Hahn-Saks) Let (Ω, Σ, µ) be a probability space and (λn) a sequence

of µ-continuous measures. If limn λn (E) exists for each E ∈ Σ then

lim
µ(E)→0

sup
n
|λn (E)| = 0

Proof. Fix ε > 0. As each λn is continuous on Σ (µ), the sets Σn,m =
{
E ∈ Σ : |λn (E)− λm (E)| ≤ ε

3

}
are closed for all positive integers n, m. Hence the sets Σp =

⋂
n,m≥p

Σn,m are also closed for
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each positive integer p. Since limn λn (E) exists for each E ∈ Σ then the complete metric

space Σ (µ) =
∞⋃

p=1

Σp and thus, thanks to the Baire Category theorem, there is a positive in-

teger q such that the closed set Σq has non-empty interior. That is, there are r > 0, A ∈ Σq

so that the ball B (A, r) ⊂ Σq i.e. |λn (E)− λm (E)| ≤ ε
3

whenever µ (A4 E) < r and

n, m ≥ q.

Now choose 0 < δ < r so that max
n=1,...,q

|λn (B)| < ε
3

for all B ∈ Σ with µ (B) < δ. Notice that

if µ (B) < δ then A ∪ B, A \ B ∈ B (A, r). Furthermore note that B = (A ∪B) \ (A \B)

and so for all positive integers n and all B ∈ Σ with µ (B) < δ we have

|λn (B)| ≤ |λq (B)|+ |λn (B)− λq (B)|

= |λq (B)|+ |λn (A ∪B)− λn (A \B)− λq (A ∪B) + λq (A \B)|

≤ |λq (B)|+ |λn (A ∪B)− λq (A ∪B)|+ |λn (A \B)− λq (A \B)|

< ε

Now we are ready for the Dunford-Pettis theorem:

Theorem 1.3 (Dunford-Pettis) A subset K of L1(µ) is uniformly integrable if and only

if it is relatively weakly compact.

Proof. (=⇒): Suppose that K ⊂ L1(µ) is uniformly integrable. Let λ ∈ Kweak* ⊂

(L∞(µ))∗ = (L1(µ))
∗∗

. For simplicity set λ (χE) ≡ λ (E) for all E ∈ Σ. Notice that λ

can be viewed as a finitely additive set function on Σ. As λ ∈ Kweak*
we have that

|λ (E)| ≤ sup
f∈K

∣∣∣∣∫
E

fdµ

∣∣∣∣ ≤ sup
f∈K

∫
E

|f | dµ

and so λ is µ-continuous (hence countably additive as well), thanks to K’s uniform integrabil-

ity. Thus by the Radon-Nikodym Theorem, λ (E) =
∫

E
dλ
dµ

dµ for all E ∈ Σ. Passing to simple

functions as well as an elementary density argument, convinces as that λ (g) =
∫

Ω
g dλ

dµ
dµ for

all g ∈ L∞(µ). Consequently λ ∈ L1(µ) and so, by a simple comparison of topologies,

Kweak*
and Kweak

are equal and topologically identical. Hence Kweak
is (weakly) compact

thanks to Alaoglou’s theorem.
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(⇐=): Now assume that K is relatively weakly compact and suppose that K is not uniformly

integrable. Then there is an exceptional ε0 > 0, a sequence (fn) ⊂ K and a sequence (En)

of measurable sets with µ (En) → 0 such that
∣∣∣∫En

fndµ
∣∣∣ ≥ ε0 for all positive integers n. As

K is relatively weakly compact, the Eberlein-Smulian theorem guarantees the existence of a

subsequence (nk) of the positive integers and that of a

function f ∈ L1(µ) so that fnk

weakly→ f . For each k and each E ∈ Σ, set λk (E) =∫
E

fnk
dµ and notice that limk λk (E) =

∫
E

fdµ. Hence by the Vitali-Hahn-Saks theorem

lim
j

sup
k

∣∣λk

(
Enj

)∣∣ = 0. In particular lim
j

∣∣λj

(
Enj

)∣∣ =
∣∣∣∫Enj

fnj
dµ
∣∣∣ = 0 contradicting the fact

that
∣∣∣∫En

fndµ
∣∣∣ ≥ ε0 for all positive integers n.
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Chapter 2

N–Functions

2.1 Definitions and elementary results

In this section we will summarize the necessary facts about a special class of convex functions

called N–functions. For a detailed account of these facts, the reader could consult [4] or [5].

Definition 2.1 Let f : [0,∞) → [0,∞) be a right continuous, monotone increasing function

with

1. f(0) = 0;

2. limt→∞ f(t) = ∞;

3. f(t) > 0 whenever t > 0;

then the function defined by

F (x) =

∫ |x|

0

f(t) dt

is called an N–function. Alternatively, the function F is an N–function if and only if F is

continuous, even and convex with

1. limx→0
F (x)

x
= 0

2. limx→∞
F (x)

x
= ∞

3. F (x) > 0 if x > 0.

13



14 CHAPTER 2. N–FUNCTIONS

In that case if f = F ′
+, the right derivative of F then f satisfies f(0) = 0; limt→∞ f(t) = ∞;

f(t) > 0 whenever t > 0; and F (x) =
∫ |x|

0
f(t) dt.

It is not hard to see that the composition of two N–functions is an N–function. A little

more thought convinces us about the truth of the converse. i.e. every N–function F is the

composition of two other N–functions. That is, there are N–functions F1 and F2 so that

F = F2 ◦ F1. Here is why:

Given the N–function F1 then F2 is uniquely determined by F2 = F ◦ F−1
1 . Since for x > 0

we have that f2(x) =
f(F−1

1 (x))

f1(F−1
1 (x))

and F−1
1 is increasing, tends to zero as x → 0 and to infinity

as x → ∞ it is necessary and sufficient for F2 to be an N–function if f
f1

satisfies all the

conditions that right derivatives of N–functions satisfy. Take f1 = fp for any 0 < p < 1 and

the rest follows.

N–functions come in mutually complementary pairs. In fact we have the following

Definition 2.2 For an N–function F define

G(x) =

∫ x

0

g(t) dt

where g is the right inverse of the right derivative f of F (see figure 2.1). G is an N–function

called the complement of F . Furthermore it is plain that the complement of G is F .

Figure 2.1: A pair of complementary N -functions
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Complementary pairs of N -functions satisfy,

Theorem 2.1 (Young’s Inequality) If F and G are two mutually complementary N-functions

then

uv ≤ F (u) + G(v) ∀u, v ∈ R

Figure 2.2: A geometric interpretation of Young’s Inequality.

Figure 2.2 above, makes Young’s Inequality geometrically clear. It is also clear from the

figure that equality is attained when v = f(|u|)sgn u or u = g(|v|)sgn v. In particular we

have

|u|f(|u|) = F (u) + G(f(|u|))

and

|v|g(|v|) = F (g(|v|)) + G(v).

Consequently we have an alternative definition for the complementary function G:

G(x) = max{t|x| − F (t) : t ≥ 0}

Young’s Inequality gives rise to the following

Theorem 2.2 Suppose that F1, F2 are N–functions with complements G1 and G2 respec-

tively. Suppose that F1(x) ≤ F2(x) for x ≥ x0. Then G2(y) ≤ G1(y) for y ≥ y0 = f2(x0) =

F ′
2+(x0).
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Proof. Let f1, f2, g1 and g2 be the right derivatives of F1, F2, G1 and G2 respectively.

Then g2(y) ≥ x0 whenever y ≥ y0 = f2(x0). Note that yg2(y) = G2(y) + F2(g2(y)) (equality

case of Young’s Inequality). Furthermore by Young’s Inequality yg2(y) ≤ G1(y) + F1(g2(y))

and so G2(y) + F2(g2(y)) ≤ G1(y) + F1(g2(y). But since F1(g2(y) ≤ F2(g2(y)) we have that

G2(y) ≤ G1(y).

N-functions grow at different rates. The following definition makes their comparison possible.

Definition 2.3 For N-functions F1, F2 we write F1 ≺ F2 if there is a K > 0 so that F1(x) ≤

F2(Kx) for large values of x. If F1 ≺ F2 and F2 ≺ F1 then we say that F1 and F2 are

equivalent and we write F1 ∼ F2.

If two N -functions are comparable then so are their complements in the reverse. Indeed if

F1 ≺ F2 then G2 ≺ G1, where Gi is the complement of Fi. In particular if F1(x) ≤ F2(x)

for large values of x then G2(x) ≤ G1(x) for large values of x.

It is worth noting at this stage that every N–function F is equivalent to the N–function Φ

defined by Φ(x) =
∫ x

0
F (t)

t
dt. After all

Φ(x) =

∫ x

0

F (t)

t
dt ≤

∫ x

0

tf(t)

t
dt = F (x).

Furthermore
F (t)

t
=

1

t

∫ t

0

f(s) ds ≥ 1

t

∫ t

t
2

f(s) ds ≥ 1

2
f

(
t

2

)
and so

Φ(2x) =

∫ 2x

0

F (t)

t
dt ≥ 1

2

∫ 2x

0

f

(
t

2

)
dt =

∫ x

0

f(s) ds = F (x)

Now the convexity of F ensures that F (αx) ≤ αF (x) for 0 < α < 1 and so F (t)
t

is increasing.

A convex function Q is called the principal part of an N -function F , if F (x) = Q(x) for

large x. All convex functions of the “De La Vallée Poussin” type are principal parts of

N -functions. Specifically we have

Theorem 2.3 If Q is convex with limx→∞
Q(x)

x
= ∞ then Q is the principal part of some

N-function.

Proof. Since limx→∞
Q(x)

x
= ∞ then limx→∞ Q(x) = ∞ and so there is x0 so that Q(x) > 0

for x ≥ x0. Thus Q(x)−Q(x0) =
∫ x

x0
q(t) dt where q is the right derivative of Q. Of course
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q is non–decreasing and right–continuous. Furthermore limt→∞ q(t) = ∞ since otherwise

q(t) ≤ b would imply Q(x) ≤ b(x−x0)+ q(x0) contradicting the fact that limx→∞
Q(x)

x
= ∞.

Without loss of generality assume that q(t) > 0 for t ≥ x0. Now since limt→∞ q(t) = ∞

there is x1 ≥ x0 + 1 so that q(x1) > q(x0 + 1) + Q(x0). Then

Q(x1) =

∫ x0+1

x0

q(t) dt +

∫ x1

x0+1

q(t) dt + Q(x0)

≤ q(x0 + 1) + Q(x0) + q(x1)(x1 − x0 − 1)

< q(x1)(x1 − x0)

and thus α = x1q(x1)
Q(x1)

> 1. Now define F by

F (x) =


Q(x1)

xα
1
|x|α for |x| ≤ x1

Q(x) for |x| ≥ x1

Now F is an N–function since its right derivative

f(x) = F ′
+(x) =


αQ(x1)

xα
1
|x|α−1 for 0 ≤ |x| ≤ x1

q(x) for |x| ≥ x1

is right continuous for x ≥ 0 satisfying f(0) = 0, limt→∞ f(t) = ∞ and f(t) > 0 whenever

t > 0.

2.2 Conditions on N–functions

There are several important classes of N -functions. Among other things, these conditions

relate to the growth of N -functions. Here are some of the most important definitions:

Definition 2.4 Let F be an N-function and let G denote its complement. Then

1. F is said to satisfy the ∆2 condition (F ∈ ∆2) if

lim supx→∞
F (2x)
F (x)

< ∞. That is, there is a K > 0 so that F (2x) ≤ KF (x) for large

values of x. If G ∈ ∆2 we say that F ∈ ∇2.

2. F is said to satisfy the ∆′ condition (F ∈ ∆′) if there is a K > 0 so that F (xy) ≤

KF (x)F (y) for large values of x and y. If G ∈ ∆′ we say that F ∈ ∇′.



18 CHAPTER 2. N–FUNCTIONS

3. F is said to satisfy the ∆3 condition (F ∈ ∆3) if there is a K > 0 so that xF (x) ≤

F (Kx) for large values of x. If G ∈ ∆3 we say that F ∈ ∇3.

4. F is said to satisfy the ∆2 condition (F ∈ ∆2) if there is a K > 0 so that (F (x))2 ≤

F (Kx) for large values of x. If G ∈ ∆2 we say that F ∈ ∇2.

It is plain that all the classes defined above are closed under the equivalence of N–functions.

2.2.1 The ∆2 condition

Among all these conditions, the ∆2 condition is perhaps the most important. It is worth

noting that F ∈ ∆2 is equivalent to F (cx) ≤ kcF (x) for large values of x, where c can be any

number greater than 1. Indeed for 2n ≥ c and large enough x we have F (cx) ≤ F (2nx) ≤

KnF (x) = kcF (x). Conversely, if 2 ≤ cn we have F (2x) ≤ F (cnx) ≤ kn
c F (x) for large values

of x.

N -functions that satisfy the ∆2 condition have growth rates less than that of power functions

as we can see by the following theorem:

Theorem 2.4 If F ∈ ∆2 then there are constants α > 1 and c > 0 so that F (x) ≤ c|x|α for

large values of x.

The proof of this theorem follows easily from the following independently useful lemma:

Lemma 2.5 F ∈ ∆2 iff there are constants α > 1 and x0 so that

xf(x)

F (x)
< α for all x ≥ x0

where f is the right derivative of F .

Proof. First note that

kF (x) ≥ F (2x) =

∫ 2x

0

f(t) dt >

∫ 2x

x

f(t) dt > xf(x) for large enough x

and so necessity follows.

To see the converse, observe that since xf(x) > F (x) for all x, α > 1. Now for x ≥ x0 we

have that ∫ 2x

x

f(t)

F (t)
dt < α

∫ 2x

x

1

t
dt = α log 2.
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Hence

log
F (2x)

F (x)
=

∫ F (2x)

F (x)

1

t
dt < α log 2

and so F (2x) < 2αF (x).

Now the proof of the theorem follows from the fact that∫ x

x0

f(t)

F (t)
dt < α

∫ x

x0

1

t
dt for all x > x0

i.e. that F (x) < F (x0)
xα
0

xα.

Lemma 2.5 offers a test for the ∆2 condition. It is often useful to have a direct test to

determine when the complement of an N–function satisfies the ∆2 condition (i.e. when does

an N–function belong to ∇2). The following theorem offers such a test:

Theorem 2.6 G ∈ ∇2 iff there exist constants β > 1 and x0 ≥ 0 such that

G(x) ≤ 1

2β
G(βx) for all x ≥ x0 .

Lets first isolate the following useful lemma:

Lemma 2.7 If F1(x) = aF (bx) where a and b are positive then the complement G1 of F1 is

given by G1(x) = aG
(

x
ab

)
, where G is the complement of F .

Proof. Notice that the right derivative f1 of F1 is given by f1(t) = abf(bt) where f is the

right derivative of F . Then the right derivative g1 of G1 is given by g1(s) = 1
b
g
(

s
ab

)
, where

g is the right derivative of G. So

G1(x) =

∫ |x|

0

g1(s) ds =
1

b

∫ |x|

0

g
( s

ab

)
ds = a

∫ |x|
ab

0

g(r)dr = aG
( x

ab

)
which is what we wanted.

Proof of theorem 2.6. First suppose that G ∈ ∇2. Then F , the complement of G, satisfies

the ∆2 condition and thus there is a constant k > 2 so that F (2x) ≤ kF (x) for large values

of x. So in virtue of the previous lemma and theorem 2.2, kG(x/k) ≤ G(x/2) or equivalently

kG(x) ≤ G
(

kx
2

)
for large values of x. So the forward implication follows by setting β = k

2
.

The reverse implication is also a direct consequence of the lemma and theorem 2.2 and its

proof is left as an exercise.
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2.2.2 The ∆3 condition

First note that if F ∈ ∆3 then F increases more rapidly than any power function. Indeed

for any positive integer n and x ≥ knx0 we have:

F (x) >
x

k
F
(x

k

)
>

x2

k3
F
( x

k2

)
> · · · >

xn

k
n(n+1)

2

F
( x

kn

)
>

F (x0)x
n

k
n(n+1)

2

Functions satisfying the ∆3 condition are equivalent to their integrals. In particular we have

that if Φ(x) =
∫ x

0
F (t) dt and F ∈ ∆3 then Φ ∼ F . In order to see this first observe that

Φ(x) =
∫ x

0
F (t) dt < xF (x) ≤ F (kx), for sufficiently large x. Furthermore for x > 1 we have

Φ(2x) =

∫ 2x

0

F (t) dt ≥
∫ 2x

x

F (t) dt > xF (x) > F (x).

From this we obtain the following theorem:

Theorem 2.8 If F ∈ ∆3 and G denotes the complement of F then there are constants

k1 < k2 so that

k1xF−1(k1x) ≤ G(x) ≤ k2xF−1(k2x)

for large values of x.

Proof. Let Φ(x) =
∫ x

0
F (t) dt and Ψ(x) =

∫ x

0
F−1(t) dt. Then Φ and Ψ are complementary

and as Φ ∼ F we conclude Ψ ∼ G. Now note that

Ψ(x) =

∫ x

0

F−1(t) dt < xF−1(x)

while

Ψ(x) =

∫ x

0

F−1(t) dt >

∫ x

x
2

F−1(t) dt >
x

2
F−1

(x

2

)
.

Since Ψ ∼ G the result follows.

2.2.3 Some implications

There is a plethora of results pertaining to the different conditions on N–functions. Again the

reader should consult [4] and [5] for a detailed account of the subject. Next, we summarize

some of the most important relations between the different classes of N–functions:
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Theorem 2.9 Let F be an N-function and let G be its complement; then the following hold.

1. If F ∈ ∆′ then F ∈ ∆2.

2. IF F ∈ ∆2 then F ∈ ∆3.

3. If F ∈ ∆3 then its complement G ∈ ∆2 (i.e. F ∈ ∇2).

4. If F ∈ ∆2 then its complement G ∈ ∆′ (i.e. F ∈ ∇′).

Proof. (1) and (2) are obvious. For (3) let k1 and k2 as in theorem 2.8. Then since F−1 is

concave and 2k2

k1
> 1 we have

F−1

(
2k2

k1

x

)
<

2k2

k1

F−1(x).

Thus by theorem 2.8 we obtain

G(2x) ≤ 2k2xF−1(2k2x) < 2k2x
2k2

k1

F−1(k1x) ≤
(

2k2

k1

)2

G(x)

for large values of x.

We continue into showing (4): So assume F (kx) ≥ F 2(x) for large values of x. Then for

sufficiently large x and y with x ≥ y we have F (kxy) > F (kx) ≥ F 2(x) ≥ F (x)F (y). By

setting x = F−1(u) and y = F−1(v) we have F (kF−1(u)F−1(v) > uv and thus

F−1(uv) ≤ kF−1(u)F−1(v) for large u, v

Now since F ∈ ∆2 then F ∈ ∆3 and so by theorem 2.8 we have that k1xF−1(k1x) ≤ G(x) ≤

k2xF−1(k2x) for large values of x. So for sufficiently large u and v we get

G(uv) ≤ k2uvF−1(k2uv)

= (
√

k2u)(
√

k2v)F−1(
√

k2u
√

k2v)

≤ k
√

k2uF−1(
√

k2u)
√

k2vF−1(
√

k2v)

≤ kG

(√
k2

k1

u

)
G

(√
k2

k1

v

)
.

Since G ∈ ∆2 the result follows.

Last and not least we prove the following theorem:
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Theorem 2.10 Given an N-function F , there is an N-function H ∈ ∇2, and thus H ∈ ∆′,

so that H (H(x)) ≤ F (x) for large values of x.

Proof. Write F = F1 ◦ F2, where F1, F2 are N -functions and let Gi be the complement of

Fi. Let Q(x) = eG1(x)+G2(x). The function Q is convex, with limx→∞
Q(x)

x
= ∞. Hence there

is an N -function K whose principal part is Q. Clearly K ∈ ∆2 and Gi(x) ≤ K(x) for large

x. So if H is complementary to K, we must have H ∈ ∆′ and H(x) ≤ Fi(x) for large x.

Thus H (H(x)) ≤ F1 (F2(x)) = F (x) for large values of x.

2.2.4 Some examples

In the next example we construct a pair of complementary N–functions neither of which

satisfies the ∆2 condition, yet both grow slower than a power of x.

Example 2.1 Let f be defined by

f(t) =

 t if 0 ≤ t < 1

k! if (k − 1)! ≤ t < k! k = 2, 3, . . .

Clearly F (x) =
∫ x

0
f(t) dt is an N–function. Furthermore for each n let xn = n!. Then

F (2xn) =

∫ 2n!

0

f(t) dt >

∫ 2n!

n!

f(t) dt = (n + 1)! · n!

while

F (xn) =

∫ n!

0

f(t) dt < n! · n!

So F (2xn)
F (xn)

> (n+1)!·n!
n!·n!

= n + 1 and thus lim supx→∞
F (2x)
F (x)

= ∞. Hence F 6∈ ∆2.

Now observe that if g is the right inverse of f then

g(t) =

 t if 0 ≤ t < 1

(k − 1)! if (k − 1)! ≤ t < k! k = 2, 3, . . .

So the complement G of F is given by G(x) =
∫ x

0
g(t) dt. Again let xn = n! and note that

G(2xn) =

∫ 2n!

0

g(t) dt >

∫ 2n!

n!

g(t) dt = n! · n!
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while

G(xn) =

∫ n!

0

g(t) dt < (n− 1)! · n!

So G(2xn)
G(xn)

> n!·n!
(n−1)!·n!

= n and thus lim supx→∞
G(2x)
G(x)

= ∞. Hence G 6∈ ∆2.

Now it is plain to see that f(t) < t2 and g(t) < t for large values of t. Hence F and G grow

slower than x3 and x2 respectively.

We have seen that every N–function F satisfying the ∆3 condition grows faster than all

power functions. The next example shows that the converse is not true even if F satisfies

the ∇2 condition.

Example 2.2 Let F be an N–function whose principal part is given by x
√

log x. It is plain

that F grows faster than any power function. Furthermore for large values of x we have that

1

4
F (2x) =

1

4
(2x)

√
log 2x ≥ x

√
log 2x > x

√
log x = F (x)

and so F ∈ ∇2 by theorem 2.6.

Now notice that for any positive k and p we have that klog kx =
(
k

log kx
log k

)log k

= (kx)log k and

so

k
√

log kx = (kx)
log k√
log kx < xp

for large values of x. Similarly xlog kx = xlog kxlog x and thus

x
√

log kx < xpx
log x√
log kx < xpx

√
log x

for large values of x.
F (kx)

xF (x)
=

(kx)
√

log kx

xx
√

log x
<

x2p

x

for large values of x.

Thus limx→∞
F (kx)
xF (x)

= 0 for all positive constants k. Hence F 6∈ ∆3.

Next we give an example of an N–function F in ∆2 \∆′.

Example 2.3 Let F (x) = x2

log(|x|+e)
. It is a matter of calculus to show that F is an N–

function. The reader can also verify that limx→∞
F (2x)
F (x)

= 4 and limx→∞
F (x2)
F 2(x)

= ∞. Hence

F ∈ ∆2 but F 6∈ ∆′.
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Finally we give an example of an N–function F in ∆3 \∆2.

Example 2.4 An N–function F whose principal part is xlog x is in ∆3 but not in ∆2. The

details are left to the reader.



Chapter 3

Orlicz Spaces

3.1 Orlicz classes

In this section we summarize the necessary definitions and results about Orlicz classes.

Again, for a detailed account the reader should consult [4] or [5]. Throughout the remaining

material we are going to assume that we are working with a non–atomic probability space

(Ω, Σ, µ).

Definition 3.1 For an N-function F and a measurable u define

F(u) =

∫
Ω

F (u)dµ.

Let L̃F = {u measurable : F(u) < ∞}. The set L̃F is called an Orlicz class.

The theorem of De La Vallée Poussin establishes that every relatively weakly compact subset

of L1 is a bounded subset of some Orlicz class. It also establishes the fact that L1 is the union

of all Orlicz classes. But it does not specify just how well the function F can be chosen. We

begin by noting the following improvement to De La Vallée Poussin’s theorem (see [1]):

Theorem 3.1 A subset K of L1(µ) is uniformly integrable if and only if there exists an

N–function H ∈ ∇2 so that H(K) = {H(| u |) : u ∈ K} is uniformly integrable.

Proof. By the theorem of De La Vallée Poussin there is a non-negative and convex function

Q with limt→∞
Q(t)

t
= ∞ so that sup

{∫
Ω

Q(| u |) dµ : u ∈ K
}

< ∞ . Since Q is the principal

25
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part of some N–function there is no loss in assuming that Q is actually an N–function.

By theorem 2.10 there is an N–function H ∈ ∇2 so that H(H(x)) ≤ Q(x) for large values

of x. Hence sup
{∫

Ω
H(H(| u |)) dµ : u ∈ K

}
< ∞ and so H(K) = {H(| u |) : u ∈ K} is

uniformly integrable by De La Vallée Poussin’s theorem. The converse is just De La Vallée

Poussin’s theorem again.

The famous Jensen’s inequality, proved in almost every text in analysis or probability theory,

is often a tool of great value:

Theorem 3.2 (Jensen’s inequality) For Φ convex and u measurable we have

Φ

(
1

µ(A)

∫
A

u dµ

)
≤ 1

µ(A)

∫
A

Φ(u) dµ

for all A ∈ Σ with µ(A) > 0.

Theorem 3.3 Let F1 and F2 be N–functions. Then L̃F1 ⊂ L̃F2 if and only if there positive

constants c and x0 so that F2(x) ≤ cF1(x) for all x ≥ x0.

Proof. In order to see the sufficiency let u ∈ L̃F1 . Then

F2(u) =

∫
Ω

F2(u) dµ =

∫
[|u|<x0]

F2(u)dµ +

∫
[|u|≥x0]

F2(u) dµ ≤ F2(x0) + c

∫
Ω

F1(u) dµ < ∞

and so u ∈ L̃F2 .

In order to establish the converse, suppose that there is a sequence (xn) with xn ↗ ∞ so

that F2(xn) > 2nF1(xn). Since (Ω, Σ, µ) is non–atomic, choose a sequence (En) of pairwise

disjoint sets with µ(En) = F1(x1)
2nF1(xn)

and let u =
∑∞

n=1 xnχEn . Then u ∈ L̃F1 since∫
Ω

F1(u) dµ =
∞∑

n=1

F1(xn)µ(En) =
∞∑

n=1

F1(xn)
F1(x1)

2nF1(xn)
=

∞∑
n=1

F1(x1)

2n
< F1(x1) < ∞

But u 6∈ L̃F2 since∫
Ω

F2(u) dµ =
∞∑

n=1

F2(xn)µ(En) ≥
∞∑

n=1

2nF1(xn)
F1(x1)

2nF1(xn)
=

∞∑
n=1

F1(x1) = ∞

Hence the result is established.

It is plain that each Orlicz class L̃F is an absolutely convex set. In general, L̃F is not a

linear space. Our next result establishes exactly when this is so.
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Theorem 3.4 L̃F is a linear space if and only if F ∈ ∆2.

Proof. If F ∈ ∆2 then for each scalar c there is a constant kc and xc > 0 so that F (cx) ≤

kcF (x) for all x ≥ xc. So for any u ∈ L̃F we have

F(cu) =

∫
Ω

F (cu) dµ =

∫
[|u|<xc]

F (cu) dµ +

∫
[|u|≥xc]

F (cu) dµ ≤ F (cxc) + kc

∫
Ω

F (u) dµ < ∞

and so cu ∈ L̃F . For closure under addition, let u1, u2 ∈ L̃F , set u = 1
2
(u1 + u2) and notice

that

F(u1 + u2) =

∫
Ω

F (u1 + u2) dµ

=

∫
Ω

F (2u) dµ

=

∫
[|u|<x2]

F (2u) dµ +

∫
[|u|≥x2]

F (2u) dµ

≤ F (2x2) + k2

∫
Ω

F (u) dµ

= F (2x2) + k2

∫
Ω

F (
1

2
(u1 + u2)) dµ

≤ F (2x2) +
k2

2
F(u1) +

k2

2
F(u2) < ∞

and so u1 + u2 ∈ L̃F .

Now assume that L̃F is a linear space. Let Φ(x) = F (2x). Note that for u ∈ L̃F we have

that 2u ∈ L̃F and thus u ∈ L̃Φ. Hence, by theorem 3.3 we have that there is a constant

k > 0 so that Φ(x) = F (2x) ≤ kF (x) for large values of x. That is F ∈ ∆2.

3.2 The Orlicz space LF

3.2.1 The Orlicz norm

Given an N–function F and its complement G, let

LF =

{
u measurable :

∫
Ω

uv dµ < ∞ for all v ∈ L̃G

}
It is plain that LF is a vector space. Furthermore, Young’s inequality ensures that L̃F ⊂ LF .
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Theorem 3.5 For each u ∈ LF we have

sup
G(v)≤1

∣∣∣∣∫
Ω

uv dµ

∣∣∣∣ < ∞

Proof. Assume not. Then without loss of generality there is a non–negative u ∈ LF and a

sequence of non–negative (vn) in L̃G with G(vn) ≤ 1 so that∫
Ω

uvn dµ > 2n

Let v =
∑∞

n=1
1
2n vn. Then by the convexity of G we have that G(v) ≤ 1, yet

∫
Ω

uv dµ = ∞.

Now define the Orlicz norm of u ∈ LF by

‖u‖F = sup
G(v)≤1

∣∣∣∣∫
Ω

uv dµ

∣∣∣∣
It is very easy to see that all the axioms for a norm are satisfied. Equipped with this norm

LF is called an Orlicz space. An obvious but important property of the norm is that is that

‖u1‖F ≤ ‖u2‖F whenever u1 ≤ u2 a.s. We leave it as an exercise to the reader to verify that

the Orlicz norm is complete, thus making an Orlicz space a Banach space.

Example 3.1 (The Orlicz norm of a characteristic function) Notice that if E ∈ Σ

and v ∈ L̃G with G(v) ≤ 1 then by Jensen’s inequality we have

G

(
1

µ(E)

∫
Ω

χEv dµ

)
≤ 1

µ(E)

∫
E

G(v) dµ ≤ 1

µ(E)

and so

‖χE‖F = sup
G(v)≤1

∣∣∣∣∫
Ω

χEv dµ

∣∣∣∣ ≤ µ(E)G−1

(
1

µ(E)

)
.

On the other hand if v0 = G−1
(

1
µ(E)

)
χE then G(v0) = 1 and

∫
Ω

χEv0 dµ = µ(E)G−1
(

1
µ(E)

)
.

So

‖χE‖F = µ(E)G−1

(
1

µ(E)

)
.

Example 3.2 (The classical Lp spaces) Let p, q be numbers greater than one and such

that 1
p

+ 1
q

= 1. If the N–function F is given by F (x) = |x|p
p

then the complement G of F is
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given by G(x) = |x|q
q

. For u ∈ LF with ‖f‖p = 1 and v ∈ L̃G with G(v) ≤ 1, the classical

Hölder’s inequality yields ∣∣∣∣∫
Ω

uv dµ

∣∣∣∣ ≤ ‖u‖p · ‖v‖q ≤ q
1
q .

On the other hand if v0 = q
1
q |u|p−1sgn u then G(v0) = 1,

∫
Ω

uv0 dµ = q
1
q and so

‖u‖F = q
1
q

So for any u ∈ LF we have

‖u‖F = q
1
q ‖u‖p.

Our next goal is to derive a generalized Hölder’s inequality. We will need several lemmas

which will be useful in other occasions.

Lemma 3.6 For every u ∈ LF and v ∈ L̃G with G(v) > 1 we have∣∣∣∣∫
Ω

uv dµ

∣∣∣∣ ≤ ‖u‖F ·G(v)

Proof. Notice that G
(

v
G(v)

)
≤ 1

G(v)
G(v). Hence∫

Ω

G

(
v

G(v)

)
dµ ≤ 1

G(v)

∫
Ω

G(v) dµ = 1

Thus ∫
Ω

u
v

G(v)
dµ ≤ ‖f‖F

and so the result follows.

Lemma 3.7 Let F be an N–function and let f be its right derivative. Let u ∈ LF with

‖u‖F ≤ 1. Then v = f(|u|) ∈ L̃G and G(v) ≤ 1.

Proof. Suppose that G(v) > 1. Then there is a positive integer n so that if un = uχ[|u|≤n]

we have that ∫
Ω

G(f(|un|)) dµ > 1

Hence

G(f(|un|)) < F (un) + G(f(|un|)) = |un| · f(|un|)
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thanks to the equality case of Young’s inequality. So by integrating the last inequality and

using the previous lemma we obtain∫
Ω

G(f(|un|)) dµ <

∫
Ω

|un| · f(|un|) dµ ≤ ‖un‖F ·
∫

Ω

G(f(|un|)) dµ

and so ‖u‖F ≥ ‖un‖F > 1 which is obviously a contradiction.

Lemma 3.8 Let u ∈ LF with ‖u‖F ≤ 1. Then u ∈ L̃F and

F(u) ≤ ‖u‖F

Consequently for every u ∈ LF we have

F

(
u

‖u‖F

)
≤ 1

Proof. Set v = f(|u|)sgn u. Then by the previous lemma we have G(v) ≤ 1. By the

equality case of Young’s inequality once again we have uv = F (u) + G(v) and so∫
Ω

F (u) dµ ≤
∫

Ω

F (u) dµ +

∫
Ω

G(v) dµ =

∫
Ω

uv dµ ≤ ‖u‖F

Now the second conclusion of the lemma is obvious.

Theorem 3.9 (Hölder’s inequality) For every u ∈ LF and v ∈ LG we have∣∣∣∣∫
Ω

uv dµ

∣∣∣∣ ≤ ‖u‖F · ‖v‖G

Proof. From the previous lemma we have that

F

(
u

‖u‖F

)
≤ 1

Hence ∣∣∣∣∫
Ω

u

‖u‖F

v dµ

∣∣∣∣ ≤ ‖v‖G.

3.2.2 The Luxemburg norm

Definition 3.2 In light of lemma 3.8, given an N–function F , the set B(F ) = {u measurable :F(u) ≤

1} is an absolutely convex, balanced and absorbing set within its corresponding Orlicz space
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LF . The well known Minkowski functional defines a different norm ‖ · ‖(F ) on LF which is

called the Luxemburg norm. Specifically for u ∈ LF set

‖u‖(F ) = inf
{

k > 0 : F
(u

k

)
≤ 1
}

.

It is plain from lemma 3.8 that ‖u‖(F ) ≤ ‖u‖F . Furthermore the infimum is attained when-

ever u ∈ LF is not 0 a.s. and we have

F

(
u

‖u‖(F )

)
≤ 1.

The reader can verify these facts through the use of Fatou’s lemma or the monotone conver-

gence theorem.

Example 3.3 (The Luxemburg norm of a characteristic function) Let E ∈ Σ with

µ(E) > 0. Then F
(
F−1

(
1

µ(E)

)
χE

)
= 1 and so

‖χE‖(F ) =
1

F−1
(

1
µ(E)

)
Theorem 3.10 The unit–ball of the Orlicz space LF endowed with the Luxemburg norm is

B(F ) = {u measurable :F(u) ≤ 1}. Furthermore for any u ∈ L̃F we have that F(u) ≤ ‖u‖(F ) whenever ‖u‖(F ) ≤ 1

F(u) ≥ ‖u‖(F ) whenever ‖u‖(F ) > 1

Proof. If ‖u‖(F ) ≤ 1 then

1

‖u‖(F )

∫
Ω

F (u) dµ ≤
∫

Ω

F

(
u

‖u‖(F )

)
dµ ≤ 1

and so F(u) ≤ ‖u‖(F ). On the other hand, if ‖u‖(F ) > 1 then for ε small enough we have

1

‖u‖(F ) − ε

∫
Ω

F (u) dµ ≥
∫

Ω

F

(
u

‖u‖(F ) − ε

)
dµ > 1

hence F(u) ≥ ‖u‖(F ).

We have noted that the Orlicz norm is larger than the Luxemburg norm. In fact these norms

are equivalent as established by the following theorem.

Theorem 3.11 For any u ∈ LF we have ‖u‖(F ) ≤ ‖u‖F ≤ 2‖u‖(F ).
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Proof. The first inequality is already established. In order to see the second inequality,

note that from Young’s inequality we have that

‖u‖F = sup
G(v)≤1

∫
Ω

uv dµ ≤ F(u) + 1

whenever u ∈ L̃F . Thus ∥∥∥∥ u

‖u‖(F )

∥∥∥∥
F

≤
∫

Ω

F

(
u

‖u‖(F )

)
dµ + 1 ≤ 2

and so the second inequality is done.

At this stage notice that theorem 3.10 gives an alternative formula for the Orlicz norm:

sup
‖v‖(G)≤1

∣∣∣∣∫
Ω

uv dµ

∣∣∣∣
from which we can easily obtain the following stronger versions of Hölder’s inequality:

Theorem 3.12 (Hölder’s inequality) For every u ∈ LF and v ∈ LG we have∣∣∣∣∫
Ω

uv dµ

∣∣∣∣ ≤ ‖u‖(F ) · ‖v‖G

and For every u ∈ LF and v ∈ LG we have∣∣∣∣∫
Ω

uv dµ

∣∣∣∣ ≤ ‖u‖F · ‖v‖(G)

3.2.3 Mean and norm convergence

Definition 3.3 We say that a sequence of functions (un) in LF converges in mean to a

function u ∈ LF iff F(un − u) → 0 as n →∞.

In view of lemma 3.8, it is plain that norm convergence implies mean convergence. If F ∈ ∆2

then we have the following theorem:

Theorem 3.13 If F(un − u) → 0 as n →∞ for F ∈ ∆2 then ‖un − u‖F → 0 as n →∞.

Proof. Fix ε > 0 and choose a positive integer k so that 1
2k−1 < ε. Since F ∈ ∆2 and

limn→∞F(un − u) = 0, we have that limn→∞F(2k (un − u)) = 0 and thus there is a positive
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integer N so that F(2k (un − u)) < 1 whenever n ≥ N . Thus for n ≥ N∥∥2k (un − u)
∥∥

F
= sup

G(v)≤1

∣∣∣∣∫
Ω

2k (un − u) v dµ

∣∣∣∣
≤ sup

G(v)≤1

∫
Ω

∣∣2k (un − u)
∣∣ |v| dµ

≤ sup
G(v)≤1

[
F(2k (un − u)) + G(v)

]
(by Young’s inequality)

< 2

Hence ‖un − u‖F < 1
2k−1 < ε and the result is established.

Remark 3.1 If F /∈ ∆2, choose an increasing sequence of numbers (an) with F (2an) >

2nF (an) and F (a1) > 1.Since (Ω, Σ, µ) is non-atomic, for each n choose pairwise disjoint

sets An
1 , . . . , A

n
n ∈ Σ with µ (An

k) = 1
n2kF (ak)

and let un =
∑n

k=1 akχAn
k
. Then

F(un) =
n∑

k=1

F (ak) µ (An
k) <

1

n

Hence (un) converges to zero in mean. On the other hand, (un) does not converge to zero in

norm: For otherwise ‖un‖F → 0 implies ‖2un‖F → 0 and so F(2un) → 0. But

F(2un) =
n∑

k=1

F (2ak) µ (An
k) >

n∑
k=1

2kF (ak)
1

n2kF (ak)
= 1

which is obviously a contradiction.

3.3 The closure of L∞ (µ) in LF (µ)

Notation 3.1 Let EF denote the closure of L∞ (µ) in the Orlicz space LF (µ).

Note that if u ∈ L̃F then the sequence of bounded functions
(
uχ[|u|≤n]

)
converges to u in

mean. Indeed

F(uχ[|u|≤n] − u) =

∫
Ω

F
(
uχ[|u|≤n] − u

)
dµ

=

∫
[|u|≤n]

F
(
uχ[|u|≤n] − u

)
dµ +

∫
[|u|>n]

F (u) dµ

=

∫
[|u|>n]

F (u) dµ → 0 as n →∞
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In light of theorems 3.4 and 3.13 we have the following

Proposition 3.14 If F ∈ ∆2 then EF = LF .

In general we have that EF ⊆ L̃F for if u ∈ EF choose a bounded function r with ‖u− r‖F <

1
2
. Then ‖2u− 2r‖F < 1 and so by lemma 3.8 we have 2u − 2r ∈ L̃F and F(2u − 2r) ≤

2 ‖u− r‖F < 1. As 2r ∈ L̃F , convexity ensures that u = 1
2
[(2u− 2r) + 2r] ∈ L̃F .

Theorem 3.15 The space EF [0, 1] is separable.

Proof. First note that if u is a bounded function with ‖u‖∞ = M then by Lousin’s theorem,

there is a sequence of continuous functions (un) with ‖un‖∞ ≤ M and a sequence of sets

(An) with µ (An) < 1
n

so that u− un = 0 on [0, 1] \ An. Thus

‖un − u‖F = sup
G(v)≤1

∫ 1

0

|un − u| |v| dµ = sup
G(v)≤1

∫
An

|un − u| |v| dµ

≤ 2M sup
G(v)≤1

∫
An

|v| dµ = 2M ‖χAn‖F

= 2Mµ (An) G−1

(
1

µ (An)

)
→ 0 as n →∞ .

Now separability follows from the fact that every continuous function is the uniform limit of

polynomials with rational coefficients.

Definition 3.4 We say that a function u ∈ LF has absolutely continuous norm if and only

if ∀ε > 0 there is δ > 0 such that ‖uχA‖F < ε for any measurable set A with µ (A) < δ.

Theorem 3.16 A function u ∈ LF has absolutely continuous norm if and only if u ∈ EF .

Proof. Suppose that u ∈ LF has absolutely continuous norm. Since u ∈ L1 then µ ([|u| > n]) →

0 as n →∞ and thus
∥∥u− uχ[|u|≤n]

∥∥
F

=
∥∥uχ[|u|>n]

∥∥
F
→ 0 as n →∞. As each of the func-

tions uχ[|u|≤n] is bounded, the forward direction is established.

Now suppose that u ∈ EF . Fix ε > 0 and choose a bounded function r with ‖u− r‖F < ε
2
.

Let M = ‖r‖∞ and choose δ > 0 such that xG−1
(

1
x

)
< ε

2M
, whenever 0 < |x| < δ (after

all limx→0 xG−1
(

1
x

)
= 0). Now for any measurable set A with µ (A) < δ we have ‖χA‖F =

µ (A) G−1
(

1
µ(A)

)
< ε

2M
thanks to example 3.1. Thus

‖uχA‖F ≤ ‖(u− r) χA‖F + ‖rχA‖F ≤ ‖u− r‖F + M ‖χA‖F <
ε

2
+

ε

2
= ε
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and so we are done.

We now turn our attention to N -functions that do not satisfy the ∆2 condition. In the

following important example we follow the lead of B. Turett in [6]:

Example 3.4 Suppose that F /∈ ∆2. Then, choose an increasing sequence of numbers (ak)

satisfying

• limk→∞ ak = ∞

• F (2ak) > 2k+1F (ak)

Since (Ω, Σ, µ) is non-atomic, choose a sequence of pairwise disjoint measurable sets (Ak)

with µ (Ak) = 1
2kF (ak)

. Let uk = akχAk
and observe that

1. F (uk) =
∫

Ω
F (uk) dµ = 1

2k ≤ 1 while F (2uk) =
∫

Ak
F (2ak) dµ ≥ 2k+1F (ak) µ (Ak) = 2.

Thus 1
2

< ‖uk‖(F ) ≤ 1.

2. F (
∑∞

k=1 uk) = 1 and thus ‖
∑∞

k=1 uk‖(F ) = 1. Thus it follows from (1), that
∑∞

k=1 uk

does not have absolutely continuous norm and so
∑∞

k=1 uk /∈ EF .

3. The function 2
∑∞

k=1 uk /∈ L̃F

4. The map T : `∞ → LF defined by T (xn) =
∑∞

k=1 xkuk is an isomorphism:

‖T (xn)‖(F ) =

∥∥∥∥∥
∞∑

k=1

xkuk

∥∥∥∥∥
(F )

≤

∥∥∥∥∥
∞∑

k=1

‖(xn)‖∞ uk

∥∥∥∥∥
(F )

= ‖(xn)‖∞ ·

∥∥∥∥∥
∞∑

k=1

uk

∥∥∥∥∥
(F )

= ‖(xn)‖∞

On the other hand if |xk0| > 1
2
‖(xn)‖∞ we have

‖T (xn)‖(F ) =

∥∥∥∥∥
∞∑

k=1

xkuk

∥∥∥∥∥
(F )

≥ ‖xk0uk‖(F ) ≥
1

2
‖(xn)‖∞ ‖uk‖(F ) ≥

1

4
‖(xn)‖∞

In fact with a bit more work we can get an isometric copy of `∞ inside LF . Here is

how:

Split Ω into pairwise disjoint sets (An) with µ (An) = 1
2n . Again since F /∈ ∆2, choose

an increasing sequence of numbers (ak) satisfying limk→∞ ak = ∞ and F
(

k+1
k

ak

)
>

2k+1F (ak). Now inside each An choose a sequence of pairwise disjoint sets
(
Ak

n

)
with

µ
(
Ak

n

)
= 1

2n · 1
2kF (ak)

and let un =
∑∞

k=1 akχAn
k
. Notice that
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(a) For each n, F (un) =
∫

Ω
F (un) dµ = 1

2n . Yet if c > 1 we have that F (cak) ≥

F
(

k+1
k

ak

)
> 2k+1F (ak) for large enough k and so F (cun) = ∞. Thus ‖un‖(F ) = 1

(b) F (
∑∞

n=1 un) = 1 and thus ‖
∑∞

n=1 un‖(F ) = 1.

(c) The map T : `∞ → LF defined by T (xn) =
∑∞

n=1 xnun is an isometry:

‖T (xn)‖(F ) =

∥∥∥∥∥
∞∑

k=1

xkuk

∥∥∥∥∥
(F )

≤

∥∥∥∥∥
∞∑

k=1

‖(xn)‖∞ uk

∥∥∥∥∥
(F )

= ‖(xn)‖∞·

∥∥∥∥∥
∞∑

k=1

uk

∥∥∥∥∥
(F )

= ‖(xn)‖∞

on the other hand

‖T (xn)‖(F ) =

∥∥∥∥∥
∞∑

k=1

xkuk

∥∥∥∥∥
(F )

≥ sup
k
‖xkuk‖(F ) = sup

k
|xk| · ‖uk‖(F ) = ‖(xn)‖∞

Thus we have

Proposition 3.17 The following are equivalent for an N-function F :

1. LF [0, 1] is separable

2. LF = EF

3. L̃F = LF

4. Every function u ∈ LF has absolutely continuous norm

5. F ∈ ∆2

3.4 Orlicz spaces are dual spaces

Theorem 3.18 If F and G are complementary N-functions then
(
EF , ‖·‖(F )

)∗
=
(
LG, ‖·‖G

)
and

(
EF , ‖·‖F

)∗
=
(
LG, ‖·‖(G)

)
.

Proof. First notice that for each v ∈ LG the map ρ : u 7−→
∫

Ω
uvdµ defines a bounded

linear functional in
(
EF , ‖·‖(F )

)∗
. Furthermore by Hölder’s inequality, ‖ρ‖ ≤ ‖v‖G. Now

since ‖v‖G = sup‖u‖(F )≤1

∣∣∫
Ω

uv dµ
∣∣, for each ε > 0 choose u0 with ‖u0‖(F ) ≤ 1 and ‖v‖G <∣∣∫

Ω
u0v dµ

∣∣+ ε
2
. Then for sufficiently large n we have that

∫
Ω
|u0v| dµ ≤

∫
[|u0|≤n]

|u0v| dµ+ ε
2

=
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Ω

∣∣χ[|u0|≤n]u0v
∣∣ dµ + ε

2
. Hence by setting u1 = sign (v) χ[|u0|≤n] |u0| we have that u1 ∈ EF

and ‖u1‖(F ) ≤ ‖u0‖(F ) ≤ 1 and so

‖v‖G <

∣∣∣∣∫
Ω

u0v dµ

∣∣∣∣+ ε

2
≤
∫

Ω

|u0v| dµ +
ε

2
≤
∫

Ω

∣∣χ[|u0|≤n]u0v
∣∣ dµ + ε = ρ (u1) + ε ≤ ‖ρ‖+ ε

Therefore ‖v‖G = ‖ρ‖.

Now if ρ ∈
(
EF , ‖·‖(F )

)∗
define λ (E) = ρ (χE) for all E ∈ Σ. Then

|λ (E)| = |ρ (χE)| ≤ ‖ρ‖ ‖χE‖(F ) =
‖ρ‖

F−1
(

1
µ(E)

) → 0 uniformly as µ(E) → 0

Thus λ is absolutely continuous with respect to µ and so by the Radon-Nicodym theorem,

there is v ∈ L1 (µ) so that ρ (χE) = λ (E) =
∫

Ω
χEvdµ for all E ∈ Σ. Since the simple

functions are dense in EF we have that ρ (u) =
∫

Ω
uvdµ for all u ∈ EF . Furthermore, for all

u ∈ L̃F we have that∣∣∣∣∫
Ω

uvdµ

∣∣∣∣ ≤ ∫
Ω

|uv| dµ ≤ lim inf
n→∞

∫
[|u|≤n]

|uv| dµ ≤ ‖ρ‖ sup
n

∥∥χ[|u|≤n]u
∥∥

(F )

≤ ‖ρ‖ ‖u‖(F ) < ∞ thanks to Fatou’s lemma

and so v ∈ LG.

A similar argument establishes the fact that
(
EF , ‖·‖F

)∗
=
(
LG, ‖·‖(G)

)
.
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