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Chapter 1

Introduction: Uniform integrability

1.1 Definitions

Throughout these notes, unless stated otherwise, all measures are of bounded variation and
countably additive. In particular (£2, %, u) will denote a probability space.
Recall that a subset IC of L*(u) is called uniformly integrable if

limsup{/ |f|d,u:f€/C}:O.
e [lf1=c]

That is given € > 0 there is a c. > 0 so that for each f € K and each ¢ > ¢, we have
[ irldu<e
[1f1=c]

Alternatively A subset K of L'(u) is uniformly integrable if and only if it is L'~bounded
and for each € > 0 there is a § > 0 so thatsup{fA\f]du:felC} < ¢ for all A € ¥ with
p(A) < 4.

In order to establish the equivalence of the two notions above, first note that for all measur-

able A, f € I, ¢ > 0 we have

/|f|du=/ 1 du+/ |f|du§cu<A>+/ £l dp
A AN[| fl<d] AN[|f|>c] [IfI>d]

Fix e > 0 and choose ¢y > 0 so that sup {prc] |f| du: f € IC} < 5 whenever ¢ > ¢y. Then

5



6 CHAPTER 1. INTRODUCTION: UNIFORM INTEGRABILITY

for all f € K we have
£
LIl dn<con@+ [ il du<ats
Q [l f1>co]

and thus K is L' bounded. Now let 0 < § < 3c- Then for all measurable A with p(A) <4
and all f € K we have

9 g
[l dn<an+ [ ipldn< g =
A [1f1>co]

To establish the converse, fix £ > 0 and choose § > 0 so that sup{ [, [f| du: f €K} <e
whenever A is measurable with pu(A) < §. Let M = sup { [, |f| du: f € K} and choose

cp > 0 so that % < 6. Then for all f € K and all ¢ > ¢y we have

M
|f] du < — < 6.
Co

ulfl =)< [

[1f1=¢]

So f[|f‘>c] |f| dpu < € and so we are done.

1.2 The theorem of De La Vallée Poussin

One characterization of uniformly integrable sets is an old theorem that finds its roots in

Harmonic Analysis and Potential theory and it is due to De La Vallée Poussin.

Theorem 1.1 (De La Vallée Poussin) A subset K of L' (i) is uniformly integrable if and

only if there is a non-negative and convex function () with lim;_ % = o0 so that

SW{LwamwfeK}<m.

Proof. Suppose that K is a uniformly integrable subset of L'(u). We will construct a
non-negative and non-decreasing function ¢ that is constant on [n,n + 1) for n = 0,1,...
with lim;_. ¢(t) = co and we will set Q(z) = [ q(t)dt for > 0. Use the hypothesis to

choose a subsequence (¢,) of the positive integers so that

1
sup{/ | f] d,u:felC}<—n‘v’n—1,2,...
(FEN 2



1.2. THE THEOREM OF DE LA VALLEE POUSSIN 7

Then for each f € K and all n = 1,2, ... we have

] dpp = / £ di
/[IfZCn} m; m|f|<m-+1]

> ) mp(m < |f] <m+1))

> u(llfl =ml).

m=cnp,

So for all f € K we have

ZZ (| fl=m)<1.

n=1 m=cp

Now for m = 1,2,... let ¢, be the number of the positive integers n, for which ¢, < m.

Then q,, / oo. Furthermore observe that

SOSTulif zml) =S andllf] = H)

n=1 m=cp

Let g0 = 0 and define ¢(t) = ¢, if t € [n,n+1) forn =0,1,2,.... Then if Q(z fo

| aima /[ sy QU

i(qu> (In <|f] <n+1))

=0

we have

p(0<|f] <1)+(qo+aq) pu([L<|f] <2])+---
qunu([lﬂ > n])

<1

Sosup{ [, Q(| f|)dn: f €K} < .
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To see that () is convex, fix 0 < 1 < x3. We then have

%(1‘1-"—962)
Q (%(fcl + 5U2)> = /0 q(t)dt
T %(361%’1?2)
/‘ﬂﬂﬁ+/ o(t) dt

0 1

1 1 L(@1+22) 1 [e2
/ q(t) dt+§/ q(t) dt—f—g/ q(t) dt
0 1 %(11+$2)
x1 1 T2
/‘ﬂﬁﬁ+§/ o(t) dt
0 0

(Q(z1) + Q(m2)) .

IN

N~ DN =

Finally observe that

and thus Qi,z) > 1g(%) > 0 as z — oo

We now prove the converse. Let M = sup {fQ Q(fdu: f € IC}. Let € > 0 and choose
cop > 0 so that @ > % whenever t > ¢y. Then for f € K and ¢ > ¢y we have that

|fl < 5Q(|f]) on the set [|f| > ¢]. Thus

19 19
|f] dp < — QUf])du < —M =«
/[fIZC] M Jjf1>q M

and so we are done. ®

1.3 The Dunford-Pettis theorem

The well known theorem of Dunford and Pettis which states that, a subset K of L'(u) is
uniformly integrable if and only if it is relatively weakly compact, gives some deep insight
to the notion of uniform integrability. Our proof of this theorem will more or less be a

combination of those in [3] and [2].
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1.3.1 The space X (i)

Define a (pseudo)metric on the o-algebra ¥ by d (A, B) = n(A A B) for all A, B € . Tt is
clear that d (A, B) = u(AAB)=pu(BA A)=d(B,A) and

d(A,B)+d(B,C) = pu(AAB)+u(BAC)

Vv

(AAB)U(BAC))

(
(
(AB°U A°BU BC°U B°C)
(B°(AUC)U B (AQ))

(

Vv

B (AAC)UB(AAC))
(AAC)
(4,0).

I
& =T T T T T =

Further, the (pseudo)metric space (X (i), d) is a complete one, because the map A — x4
is an isometry 3 () — L' (1) onto the closed set of all the characteristic functions (or more
directly, if (E,) is a Cauchy sequence in ¥ (u) then E, — limsup E,, = liminf £,,, p-almost
surely).

Also notice that if A is an absolutely continuous measure with respect to pu, then A is a
continuous real valued function on the (pseudo)metric space ¥ (u), for if E, — E in X (u)

then both u (E'\ EE,) — 0 and u (E, \ FE,) — 0 and so
A(En) = AE)| = [M(En) = AMEE,) + A(EE,) — A (E)|
<A(E,\ EE,) + A\(E\ EE,) — 0.

It is also noteworthy that the set-theoretic operations of union, intersection, symmetric

difference and complementation are continuous.

Theorem 1.2 (Vitali-Hahn-Saks) Let (2, X, i) be a probability space and (\,) a sequence

of pu-continuous measures. If lim, A, (E) exists for each E € 3 then

lim supl|A, (E) =0
i sup |, (E)|

Proof. Fixe > 0. Aseach A, is continuous on ¥ (p1), the sets £, ,,, = {E EX: N (E) =\ (B) < %}

are closed for all positive integers n, m. Hence the sets ¥, = (] X,,, are also closed for
n,m>p
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each positive integer p. Since lim, A, (E) exists for each E € ¥ then the complete metric
o
space X (1) = |J ¥, and thus, thanks to the Baire Category theorem, there is a positive in-

p=1
teger g such that the closed set X, has non-empty interior. That is, there are r > 0, A € 3,

so that the ball B(A,r) C X, ie. |\ (E) — Ay (E)| < § whenever p(AAE) < r and

n,m > q.

,,,,,

if 4(B) <6 then AUB, A\ B € B(A,r). Furthermore note that B = (AUB) \ (A\ B)

and so for all positive integers n and all B € ¥ with p(B) < § we have

[An (B)] < [Aq (B)] + |An (B) = A (B)]
= [Ag (B)l + A (AU B) = An (A\ B) = A (AU B) + A, (A\ B)|
< Ag (B) + A (AU B) = Ay (AU B)[ + [A (A\ B) = Ay (A\ B)|

<e€

Now we are ready for the Dunford-Pettis theorem:

Theorem 1.3 (Dunford-Pettis) A subset K of L'(u) is uniformly integrable if and only

if it is relatively weakly compact.

—weak*

Proof. (=): Suppose that K C L'(p) is uniformly integrable. Let A € K C
(L>=(p))" = (LY(w))™. For simplicity set A (xg) = A(E) for all E € ¥. Notice that \

. . .. . —=weak*
can be viewed as a finitely additive set function on . As A € K we have that

/fdu‘ Ssup/ |fldp
FE feKkJE

and so A is u-continuous (hence countably additive as well), thanks to K’s uniform integrabil-

ity. Thus by the Radon-Nikodym Theorem, A (E) = [, %du for all E € ¥. Passing to simple

[A(E)] < sup
fex

functions as well as an elementary density argument, convinces as that A (g) = fQ g%dﬂ for
all g € L>®(u). Consequently A\ € L'(u) and so, by a simple comparison of topologies,
—weak*

I and 7 are equal and topologically identical. Hence £V s (weakly) compact

thanks to Alaoglou’s theorem.
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(<=): Now assume that K is relatively weakly compact and suppose that K is not uniformly
integrable. Then there is an exceptional gy > 0, a sequence (f,,) C K and a sequence (E,)
of measurable sets with u (FE,) — 0 such that ’ i) B, fnd,u‘ > ¢gp for all positive integers n. As
IC is relatively weakly compact, the Eberlein-Smulian theorem guarantees the existence of a
subsequence (ny) of the positive integers and that of a

function f € L'(u) so that f,, wealdy f. For each k and each F € X, set A\, (F) =
J5 fandpe and notice that limy Ay (E) = [, fdu. Hence by the Vitali-Hahn-Saks theorem

lim sup ‘)\k (Enj)} = 0. In particular lim |/\j (En])| = UE fnjdu’ = 0 contradicting the fact
J k J nj

that ‘ /, g, Jndp| = €o for all positive integers n. m
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Chapter 2

N—Functions

2.1 Definitions and elementary results

In this section we will summarize the necessary facts about a special class of convex functions

called N-functions. For a detailed account of these facts, the reader could consult [4] or [5].

Definition 2.1 Let f : [0,00) — [0,00) be a right continuous, monotone increasing function

with

1. f(0) =0;
3. f(t) > 0 whenevert > 0;

then the function defined by

||
Fe)= [ fde

is called an N —function. Alternatively, the function F is an N—function if and only if F is

continuous, even and convexr with

F(z)

T

=0

1. hmxﬂo

2. lim,_,,, F@

= 0

3. F(x) >0 ifz>0.

13
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In that case if f = F', the right derivative of F' then f satisfies f(0) = 0; limy_. f(t) = o0,
f(t) > 0 whenever t > 0; and F(x) = = f(t)dt.

—Jo

It is not hard to see that the composition of two N-functions is an N-—function. A little
more thought convinces us about the truth of the converse. i.e. every N—function F' is the
composition of two other N—functions. That is, there are N—functions Fy and Fy so that
F = F, o F. Here is why:

Given the N—function F} then F5 is uniquely determined by Fy = F' o Ffl. Since for £ > 0
we have that fo(z) = % and F; ! is increasing, tends to zero as x — 0 and to infinity
as r — oo it is necessary and sufficient for F, to be an N—function if % satisfies all the
conditions that right derivatives of N—functions satisfy. Take f; = f? for any 0 < p < 1 and
the rest follows.

N—functions come in mutually complementary pairs. In fact we have the following

Definition 2.2 For an N—function F' define

where g is the right inverse of the right derivative f of F' (see figure 2.1). G is an N —function
called the complement of F'. Furthermore it is plain that the complement of G is F.

F=E et
[
O G(x]

Figure 2.1: A pair of complementary N-functions
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Complementary pairs of N-functions satisfy,

Theorem 2.1 (Young’s Inequality) If F' and G are two mutually complementary N-functions
then

w < F(u) + G(v) Yu,v € R

Figure 2.2: A geometric interpretation of Young’s Inequality.

Figure 2.2 above, makes Young’s Inequality geometrically clear. It is also clear from the
figure that equality is attained when v = f(|ul)sgn v or u = g(|v|)sgn v. In particular we

have

ul f(lul) = F(u) + G(f(Ju]))
and

vlg(lv]) = F(g(|v])) + G(v).
Consequently we have an alternative definition for the complementary function G:

G(z) = max{t|lx| — F(t) : t > 0}

Young’s Inequality gives rise to the following
Theorem 2.2 Suppose that Fy, F5 are N—functions with complements Gy and G5 respec-

tively. Suppose that Fy(x) < Fy(z) for x > xg. Then Ga(y) < Gi(y) fory > yo = fo(zo) =
Fy (o).
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Proof. Let fi, fa, g1 and g5 be the right derivatives of Fy, Fy, G; and G5 respectively.
Then g»(y) > xo whenever y > yo = fo(20). Note that ygo(y) = Ga(y) + Fo(g2(y)) (equality
case of Young’s Inequality). Furthermore by Young’s Inequality yg2(y) < G1(y) + Fi(g2(y))
and so Ga(y) + Fa(g2(y)) < Gi(y) + Fi(g2(y). But since Fi(g2(y) < F(g2(y)) we have that
Ga(y) <Gi(y). =

N-functions grow at different rates. The following definition makes their comparison possible.

Definition 2.3 For N-functions Fy, Fy we write Fy < Fy if there is a K > 0 so that Fy(z) <
Fy(Kx) for large values of x. If Fy < Fy and Fy < Fy then we say that Fy and Fy are

equivalent and we write Fy ~ Fj.

If two N-functions are comparable then so are their complements in the reverse. Indeed if
Fy < F, then Gy < G1, where G; is the complement of F;. In particular if Fi(x) < Fy(z)
for large values of x then Go(z) < G1(x) for large values of .

It is worth noting at this stage that every N—function F' is equivalent to the N—function ®
defined by ®(z) = [ F dt. After all

@(x):/ox@dtg/ tft()dt Fla).

0

=t sz [ a5 (5)
@(zx):/:x@dzz%/:xf(%) dt:/xf(s)ds:F(x)

Now the convexity of F' ensures that F'(az) < aF(z) for 0 < a < 1 and so F ) s increasing.

Furthermore

and so

A convex function @ is called the principal part of an N-function F, if F' (x) = Q(x) for
large x. All convex functions of the “De La Vallée Poussin” type are principal parts of

N-functions. Specifically we have

(z)

Theorem 2.3 If () is convexr with limm_mQT = oo then Q) is the principal part of some

N -function.

Proof. Since lim,_. @ = oo then lim, .., Q(z) = oo and so there is xy so that Q(z) > 0

for © > xg. Thus Q(z) — Q(xg) = f;f) q(t) dt where q is the right derivative of Q). Of course
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¢ is non—decreasing and right—continuous. Furthermore lim; .., q(f) = oo since otherwise

q(t) < b would imply Q(z) < b(x — ) + q(xo) contradicting the fact that lim, ., <2 = co.

xT

Without loss of generality assume that ¢(t) > 0 for ¢ > 5. Now since lim; ., ¢(t) = oo
there is x1 > zo + 1 so that ¢(x1) > q(xo+ 1) + Q(zp). Then

Q(x1) Z/m0+ q(t) dt+/ml q(t) dt + Q(x)

te) xo+1
< q(zo +1) + Q(z0) + q(z1)(21 — 20 — 1)

< q(x1) (71 — 20)

and thus o = %%fll)) > 1. Now define F' by

o) %ma for |z| <
x) = 1
Q(z) for |z| >z

Now F'is an N—function since its right derivative

fo) = P ) — | Sl for 0< el <o
_ () =

q(z) for |z| >z

is right continuous for > 0 satisfying f(0) = 0, lim;_, f(t) = co and f(¢) > 0 whenever

t>0 m

2.2 Conditions on N—functions

There are several important classes of N-functions. Among other things, these conditions

relate to the growth of N-functions. Here are some of the most important definitions:
Definition 2.4 Let F' be an N-function and let G denote its complement. Then

1. F is said to satisfy the Aq condition (F € Ay) if

limsup,_, I;((Qf)) < 00. That is, there is a K > 0 so that F(2z) < KF(x) for large

values of x. If G € Ay we say that F' € V.

2. F is said to satisfy the A’ condition (F € A') if there is a K > 0 so that F(zy) <
KF(x)F(y) for large values of x and y. If G € A" we say that F € V'.
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3. F is said to satisfy the Az condition (F € Ag) if there is a K > 0 so that vF(x) <
F(Kzx) for large values of x. If G € Az we say that F' € V3.

4. F is said to satisfy the A2 condition (F € A?) if there is a K > 0 so that (F(z))* <
F(Kzx) for large values of x. If G € A? we say that F € V>

It is plain that all the classes defined above are closed under the equivalence of N—functions.

2.2.1 The A, condition

Among all these conditions, the A, condition is perhaps the most important. It is worth
noting that F' € A, is equivalent to F/(cx) < k.F(x) for large values of x, where ¢ can be any
number greater than 1. Indeed for 2" > ¢ and large enough x we have F(cz) < F(2"z) <
K"F(x) = k.F(z). Conversely, if 2 < ¢ we have F(2z) < F(c"z) < kF(z) for large values
of z.

N-functions that satisfy the Ay condition have growth rates less than that of power functions

as we can see by the following theorem:

Theorem 2.4 If F' € A, then there are constants a > 1 and ¢ > 0 so that F(x) < c|z|* for

large values of x.
The proof of this theorem follows easily from the following independently useful lemma:

Lemma 2.5 F € A, iff there are constants a > 1 and xy so that

zf(x)
F(x)

where f is the right derivative of F.

< aforall x > zg

Proof. First note that

2x 2x
kF(z) > F(2z) = / f(t)dt > / f(t)dt > x f(x) for large enough x
0 T

and so necessity follows.
To see the converse, observe that since xf(z) > F(z) for all x, & > 1. Now for z > zy we

have that

2 2

T () /“1

AR Zdt = alog2.
Ft) <« 3 alog

xT
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Hence

log

F(2r) (TG
Fl) —/ ;dt<o¢log2

and so F'(2z) < 2*F(x). =
Now the proof of the theorem follows from the fact that

/ &dt<a/ 1dt for all x > x
z F(1) v b

i.e. that F(z) < ol ga

Zo
Lemma 2.5 offers a test for the Ay condition. It is often useful to have a direct test to
determine when the complement of an N—function satisfies the Ay condition (i.e. when does

an N—function belong to V). The following theorem offers such a test:
Theorem 2.6 G € V, iff there exist constants 3 > 1 and x¢o > 0 such that
1
G(z) < %G(ﬁx) for all x > xy.

Lets first isolate the following useful lemma:

Lemma 2.7 If Fi(x) = aF(bx) where a and b are positive then the complement Gy of Fy is
given by Gi(x) = aG (ﬁ), where G is the complement of F'.

Proof. Notice that the right derivative f; of F} is given by fi(t) = abf(bt) where f is the
right derivative of F'. Then the right derivative g; of Gy is given by ¢;(s) = %g (ﬁ), where
g is the right derivative of G. So

||

o= [ ran= [ (5 e [ oo —ac (3)

which is what we wanted. m

Proof of theorem 2.6. First suppose that G € V5. Then F', the complement of G, satisfies
the Ay condition and thus there is a constant k£ > 2 so that F'(2z) < kF(z) for large values
of . So in virtue of the previous lemma and theorem 2.2, kG(z/k) < G(x/2) or equivalently
kG(x) < G (%9”) for large values of . So the forward implication follows by setting 5 = %
The reverse implication is also a direct consequence of the lemma and theorem 2.2 and its

proof is left as an exercise. m
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2.2.2 The Aj condition

First note that if F' € A3 then F increases more rapidly than any power function. Indeed

for any positive integer n and x > k"¢ we have:

T _(x x? x " x F(xg)x™
F(LC) > %F <E> > ﬁF (ﬁ) > e > —k,n<n2+l> F <E> > —kn(njl)
Functions satisfying the A3 condition are equivalent to their integrals. In particular we have

that if ®(z fo t)dt and F € Az then ® ~ F. In order to see this first observe that
®(x) = [ ( )dt < xF(a:) < F(kz), for sufficiently large x. Furthermore for > 1 we have

2x 2x
B(20) / F(t)dt > / F(t)dt > 2F(z) > F(z).
0 T
From this we obtain the following theorem:

Theorem 2.8 If F' € Az and G denotes the complement of F then there are constants
ki < ko so that
ko F Y (kx) < G(x) < kor F (ko)

for large values of x.

Proof. Let ®(z fo t)dt and ¥(x fo t)dt. Then ® and ¥ are complementary
and as ¢ ~ F we conclude ¥ ~ G. Now note that

U(x) = /0 ’ FYt)dt < xF(z)

\I/(a:):/OIF_l(t)dt>AIF_l(t)dt> gF-l (g)

Since ¥ ~ @ the result follows. =

while

2.2.3 Some implications

There is a plethora of results pertaining to the different conditions on N—functions. Again the
reader should consult [4] and [5] for a detailed account of the subject. Next, we summarize

some of the most important relations between the different classes of N—functions:
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Theorem 2.9 Let F' be an N-function and let G be its complement; then the following hold.
1. If F € A’ then F € A,.
2. IF F € A? then F € As.
3. If F € Ag then its complement G € Ay (i.e. F € Vs).
4. If F € A? then its complement G € A’ (i.e. F € V').

Proof. (1) and (2) are obvious. For (3) let k1 and ky as in theorem 2.8. Then since F~' is

2ks 2ko
! —F
( . ) 01 0),

Thus by theorem 2.8 we obtain

concave and % > 1 we have

G(22) < 2k F~ Y (2koz) < 2k2x2k—k2F (ki) < (2:2) G(z)
1 1

for large values of x.

We continue into showing (4): So assume F(kz) > F?(z) for large values of . Then for
sufficiently large = and y with z > y we have F(kzy) > F(kz) > F*(z) > F(x)F(y). By
setting x = F~!(u) and y = F~*(v) we have F(kF~'(u)F~(v) > uv and thus

FHw) < kF~Y(u)F~(v) for large u, v

Now since F' € A? then F' € Az and so by theorem 2.8 we have that kjzF~!(kz) < G(z) <

kox '~ (kox) for large values of z. So for sufficiently large u and v we get

G(uwv) < kpuvF ™ (kyuv)
= (Vko) (Vh2o) F ™ (W hyun/ ko)
< k\/k;_guF \/_u \/_UF \/_v

< kG ﬁu G ﬁv :
k1 k1
Since G € A, the result follows. m

Last and not least we prove the following theorem:
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Theorem 2.10 Given an N-function F, there is an N-function H € V2, and thus H € A’,
so that H (H(z)) < F(x) for large values of x.

Proof. Write F' = Fj o F,, where Fi, F5 are N-functions and let GG; be the complement of
F;. Let Q(x) = e%1(®)+G2(®)  The function Q is convex, with lim,_, . @ = 0o. Hence there
is an N-function K whose principal part is Q. Clearly K € A? and G;(z) < K(z) for large
x. So if H is complementary to K, we must have H € A’ and H(z) < F;(z) for large x.
Thus H (H(z)) < Fy (Fy(z)) = F(x) for large values of x. m

2.2.4 Some examples

In the next example we construct a pair of complementary N—functions neither of which

satisfies the Ay condition, yet both grow slower than a power of x.

Example 2.1 Let f be defined by

t it 0<t<1

f(t) = .
Boif (k—1)1<t<k k=23,...

Clearly F(x) = [ f(t)dt is an N-function. Furthermore for each n let x,, = n!. Then

2n! 2n/!
F(2x,) = f(t)dt > ft)dt =(n+1)!-n!

0 n!

while
n!
F(z,) = f(t)dt <nl-n!
0

So 1;7((2;:)) (n;%'"! =n+1 and thus limsup,_, 1;((2;)) = 0. Hence F & N,.

Now observe that if g is the right inverse of f then

t if 0<t<1

g(t) = ,
k-1 if (k—1)!<t<k k=23,...

So the complement G of F is given by G(x) = fow g(t)dt. Again let x,, = n! and note that

2n! 2n!
G(2z,) = / g(t)dt > / g(t)dt =n!-n!
0 n

!
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while '
Gla) = / g(t)dt < (n—1)! -l
0
So Cg(zfn")) > (nﬁ!l'gb!!_n! =n and thus limsup,_, GG((%Z”)) = 00. Hence G & A,.

Now it is plain to see that f(t) < t* and g(t) <t for large values of t. Hence F and G grow

slower than 3 and x? respectively.

We have seen that every N—function F satisfying the Az condition grows faster than all
power functions. The next example shows that the converse is not true even if F' satisfies

the V3 condition.

Example 2.2 Let F be an N —function whose principal part is given by xV'°8% . It is plain

that I grows faster than any power function. Furthermore for large values of x we have that

1 1
ZF(2x> — Z_1(21,)\/log2x 2 l,\/loglr > x\/logx — F(l')

and so F' € V5 by theorem 2.6.
ogkz Ing
Now notice that for any positive k and p we have that k'°8%* = (k:llog?) = (kx)"°8* and

SO

log k
VIR = () Viels < P
for large values of x. Similarly x'°8%* = zlo8kgloe= and thus

log x
gVIoske Py Togks < qPgVics®

for large values of x.
F(kx)  (kz)Vieke 2

= <
xF(x) xyVioss x

for large values of x.

Thus lim,_, oo % = 0 for all positive constants k. Hence F' ¢ As.

Next we give an example of an N—function F' in Ay \ A’

2

Example 2.3 Let F(z) = log(‘fw. It is a matter of calculus to show that F is an N-—
function. The reader can also verify that lim, . % =4 and lim,_, ?g—@ = 00. Hence

Fel but FgA.
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Finally we give an example of an N—function F in Az \ A

Example 2.4 An N -function F whose principal part is £'°8% is in As but not in A?. The

details are left to the reader.



Chapter 3

Orlicz Spaces

3.1 Orlicz classes

In this section we summarize the necessary definitions and results about Orlicz classes.
Again, for a detailed account the reader should consult [4] or [5]. Throughout the remaining
material we are going to assume that we are working with a non-atomic probability space

(€, 3, p).

Definition 3.1 For an N-function F and a measurable u define

Let L = {u measurable : F(u) < oo}. The set L* is called an Orlicz class.

The theorem of De La Vallée Poussin establishes that every relatively weakly compact subset
of L' is a bounded subset of some Orlicz class. It also establishes the fact that L' is the union
of all Orlicz classes. But it does not specify just how well the function F' can be chosen. We

begin by noting the following improvement to De La Vallée Poussin’s theorem (see [1]):

Theorem 3.1 A subset K of L'(u) is uniformly integrable if and only if there exists an
N—function H € V? so that H(K) = {H(|u |) : u € K} is uniformly integrable.

Proof. By the theorem of De La Vallée Poussin there is a non-negative and convex function

Q@ with lim;_ @ = 00 so that sup { [, Q(| u|)dp: u € K} < oo . Since @ is the principal

25
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part of some N-function there is no loss in assuming that () is actually an N—function.
By theorem 2.10 there is an N-function H € V? so that H(H(z)) < Q(z) for large values
of z. Hence sup{ [, H(H(|u|))dp:ue€K} < 0o and so H(K) = {H(Ju|): ue K} is
uniformly integrable by De La Vallée Poussin’s theorem. The converse is just De La Vallée
Poussin’s theorem again. m

The famous Jensen’s inequality, proved in almost every text in analysis or probability theory,

is often a tool of great value:
Theorem 3.2 (Jensen’s inequality) For ® conver and u measurable we have
CI)( ! / d)< L /CID()d
—— | udp ) < —— u) dp
1(A) Ja 1(A) Ja
for all A € ¥ with pu(A) > 0.

Theorem 3.3 Let Fy and Fy be N—functions. Then L™ C L™ if and only if there positive

constants ¢ and xy so that Fy(z) < cFy(x) for all x > xy.
Proof. In order to see the sufficiency let u € L. Then
Fy(u) = / Fy(u)dp = / Fy(u)du +/ Fy(u)dp < Fy(xo) + c/ Fi(u)dp < oo
Q [lu|<zo] [lu|>z0] Q

and so u € L.
In order to establish the converse, suppose that there is a sequence (x,) with x, /' 0o so

that Fy(z,) > 2"Fi(x,). Since (£2, 3, p) is non—atomic, choose a sequence (FE,,) of pairwise

disjoint sets with u(E,) = % and let u = 3°°° | @, xg,. Then u € L™ since

[t = st A B i

But u ¢ L™ since

= n Fl $1
/QF2(U)dM:;F2($n >22 Ao 3m o) Zﬂ 1) =

Hence the result is established. m

It is plain that each Orlicz class LF is an absolutely convex set. In general, L¥ is not a

linear space. Our next result establishes exactly when this is so.
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Theorem 3.4 LF is a linear space if and only if F € A,.

Proof. If F' € A, then for each scalar ¢ there is a constant k. and z. > 0 so that F(cz) <

k.F(z) for all # > .. So for any u € L* we have

F(cu) = /QF(cu) dp = AMQC] F(cu)dp + /“u|>xc] F(cu)dpu < F(ex.) + k. /Q F(u)dp < oo

and so cu € LF. For closure under addition, let uq, us € Lr , set u = %(ul + ug) and notice

that

F(uy +ug) = / F(uy + ug) dp
Q

:/QF(Qu) du
— /[ u|<m]F(2u) dp+ / F(2u) dp

(lu| =]

< F(2x9) —i—kg/QF(u) dpu

= F(2xy) + k‘g/ F(%(ul + uz)) dp

Q

k k
< F(215) + ;F(ul) + ;F(UQ) < 00

and so uj + us e Lr.

Now assume that L¥ is a linear space. Let ®(z) = F(2z). Note that for u € L* we have
that 2u € L¥ and thus v € L®. Hence, by theorem 3.3 we have that there is a constant
k > 0 so that ®(z) = F(2z) < kF(z) for large values of x. That is F € Ay. =

3.2 The Orlicz space L”

3.2.1 The Orlicz norm

Given an N—function I’ and its complement G, let
L' = {u measurable : / uvdp < oo forallv € EG}
Q

It is plain that LF is a vector space. Furthermore, Young’s inequality ensures that LF ¢ L¥.
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/u’udu‘ < 00
Q

Proof. Assume not. Then without loss of generality there is a non-negative u € L and a

Theorem 3.5 For each v € L¥ we have

sup
G(v)<1

sequence of non-negative (v,) in L% with G(v,) < 1 so that

/uvn dp > 2"
Q

Letv=> ", 2%1:”. Then by the convexity of G we have that G(v) < 1, yet [, uvdu = oo.

[
Now define the Orlicz norm of u € L¥ by

|ul|r = sup
G(v)<1

/uvdu‘
Q

It is very easy to see that all the axioms for a norm are satisfied. Equipped with this norm
LT is called an Orlicz space. An obvious but important property of the norm is that is that
|lu1]|lF < ||ugl|F whenever u; < ug a.s. We leave it as an exercise to the reader to verify that

the Orlicz norm is complete, thus making an Orlicz space a Banach space.

Example 3.1 (The Orlicz norm of a characteristic function) Notice that if E € X
and v € LY with G(v) < 1 then by Jensen’s inequality we have

1

and so

Ixellr = sup
G(v)<1

/QXEUdN‘ < u(E)G (@) :

On the other hand if vy = G* ( L > xe then G(vg) =1 and fQ Xevodu = p(E)G™1 (L)

u(E) u(E)
So
_ -1 1
Ielle = ()6 (5.

Example 3.2 (The classical L? spaces) Let p, q be numbers greater than one and such

that % + % = 1. If the N—function F is given by F(x) = % then the complement G of F' 1is
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gwen by G(z) = %. For u € L¥ with ||f||, = 1 and v € LE with G(v) < 1, the classical

Holder’s inequality yields
1
Lo < el < o
Q

On the other hand if vy = qé|u|p_1sgn u then G(vg) = 1, [ uvodp = qé and so
1
lullr = g

So for any u € L' we have

1
[ullr = g lull,.

Our next goal is to derive a generalized Holder’s inequality. We will need several lemmas

which will be useful in other occasions.

Lemma 3.6 For cvery u € L¥ and v € L¢ with G(v) > 1 we have

S~

w du] < llullr - G()

G(v). Hence

Proof. Notice that G (Gq(’v)) < G%v)
G

Thus
/ uml—du < |If]
o Gv) 1=

and so the result follows. m

Lemma 3.7 Let F be an N -function and let f be its right derivative. Let u € L¥ with
|ullp < 1. Thenv = f(|u|) € L¢ and G(v) < 1.

Proof. Suppose that G(v) > 1. Then there is a positive integer n so that if u, = uxuj<n

we have that
[ Gttty dn =1

Hence

G(f(Junl)) < F(un) + G(f(Junl)) = |un] - f(|unl)
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thanks to the equality case of Young’s inequality. So by integrating the last inequality and

using the previous lemma we obtain
/QG(f(WnD)du < /Q [t - f([unl) dpp < l[un]| e -/QG(f(\unD)du
and so ||u||p > ||un||F > 1 which is obviously a contradiction. m
Lemma 3.8 Let u € L¥ with ||ul|p < 1. Then u € L¥ and
F(u) < lullr
Consequently for every u € L¥ we have

()=
[l 7

Proof. Set v = f(Ju|)sgn u. Then by the previous lemma we have G(v) < 1. By the

equality case of Young’s inequality once again we have uv = F'(u) + G(v) and so

/QF(u)d,ug/QF(u)d,qu/ﬂG(v)du:/quduS w7

Now the second conclusion of the lemma is obvious. m

Theorem 3.9 (Holder’s inequality) For every u € LY and v € LY we have

[ o] < e e

Proof. From the previous lemma we have that

()=
[[ull 7

u
/ —vdu] < Iole.
o Tallr

Hence

3.2.2 The Luxemburg norm

Definition 3.2 In light of lemma 3.8, given an N —function F, the set B(py = {u measurable : F(u) <

1} is an absolutely convex, balanced and absorbing set within its corresponding Orlicz space
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L¥. The well known Minkowski functional defines a different norm || - ||(ry on L* which is

called the Luxemburg norm. Specifically for u € LT set

| (ry = inf{k‘ >0:F (%) < 1}.

It is plain from lemma 3.8 that ||u|/(7) < ||u|/r. Furthermore the infimum is attained when-

ever u € L¥ is not 0 a.s. and we have

()
[l 7y

The reader can verify these facts through the use of Fatou’s lemma or the monotone conver-

gence theorem.

Example 3.3 (The Luxemburg norm of a characteristic function) Let £ € ¥ with

w(E) > 0. Then F (Ffl (ﬁ) XE) =1 and so

1
el = ———~
F (5te)

Theorem 3.10 The unit-ball of the Orlicz space LY endowed with the Luzemburg norm is

B(ry = {u measurable : F(u) < 1}. Furthermore for any u € L* we have that
F(u) < |lul|(ry whenever |jul[m <1
F(u) > |lul|(ry whenever |jul[(m > 1

Proof. If |jul|(ry <1 then

1
—/F(u)duS/F(L) dp <1
lullry Ja o \llullm

and so F(u) < |lul|(). On the other hand, if ||ul[(z) > 1 then for € small enough we have

1
—/F(u)duz/F<L) dp > 1
lulley — € Jo o \llulle) -«

hence F(u) > |Jul/(p). =
We have noted that the Orlicz norm is larger than the Luxemburg norm. In fact these norms

are equivalent as established by the following theorem.

Theorem 3.11 For any u € L* we have ||ul|(py < |lullr < 2[jull(s).
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Proof. The first inequality is already established. In order to see the second inequality,

note that from Young’s inequality we have that

|u||F = sup / wodp < F(u) +1
G(v)<1JQ

whenever u € L¥. Thus

u

i, = i) e
» Jao  \ulw

and so the second inequality is done. m

ull(r)

At this stage notice that theorem 3.10 gives an alternative formula for the Orlicz norm:

/uv d,u‘
Q

from which we can easily obtain the following stronger versions of Holder’s inequality:

sup
llvll(e)<1

Theorem 3.12 (Hélder’s inequality) For every u € LY and v € LY we have

‘/qudu’ < lull#) - [[v/le

and For every v € LT and v € LY we have
[ < e el

3.2.3 Mean and norm convergence

Definition 3.3 We say that a sequence of functions (u,) in LT converges in mean to a

function u € L* iff F(u, —u) — 0 as n — oo.

In view of lemma 3.8, it is plain that norm convergence implies mean convergence. If F' € A,

then we have the following theorem:
Theorem 3.13 If F(u, —u) — 0 as n — oo for F' € Ay then |u, — u||, — 0 as n — oo.

Proof. Fix ¢ > 0 and choose a positive integer k£ so that 2k—1,1 < €. Since F € A, and

lim,, .o F(u, —u) = 0, we have that lim,, ., F(2* (u, —u)) = 0 and thus there is a positive
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integer N so that F(2* (u, —u)) < 1 whenever n > N. Thus for n > N
/ 28 (up, — u) vd,u‘

Q
< sup [ |2 (up — )| o] dp
Gv)<1Jo

H2k (up, — ||, = sup

G(v)<1

< sup [F(2" (u, —u)) + G(v)] (by Young’s inequality)
G(v)<1

<2
Hence [|u, — ul|z < 57— < € and the result is established. =

Remark 3.1 If ' ¢ Ay, choose an increasing sequence of numbers (a,) with F (2a,) >
2"F (ay) and F (ay) > 1.Since (0, X, u) is non-atomic, for each n choose pairwise disjoint

sets AV, ..., Al € ¥ with u(A}) = ; and let u, = > k1 @kXap. Then

1

n2k F(ay
- 1

Flun) = > F(ax) p(Af) < -
k=1

Hence (u,,) converges to zero in mean. On the other hand, (u,) does not converge to zero in

norm: For otherwise ||u,|  — 0 implies ||2u,| — 0 and so F(2u,) — 0. But

F(2u,) = 3 F (20) 1 (A7) > 3 2°F (ay) m 1

which 1s obviously a contradiction.

3.3 The closure of L™ (u) in L (u)

Notation 3.1 Let E¥ denote the closure of L™ () in the Orlicz space L* (p).

Note that if uw € LF then the sequence of bounded functions (ux[|u|§n]) converges to u in

mean. Indeed
F(uxuj<n — u) = /Q F (uX(uj<n) — u) dp

:/[II ]F(“X[\ulén} — u) d#+/ F(u)dp
ul<n

[lu|>n]

:/ F(u)dp — 0asn— oo
[lu|>n]
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In light of theorems 3.4 and 3.13 we have the following
Proposition 3.14 If F € A, then Ef = LF.

In general we have that E C L¥ for if u € E¥ choose a bounded function r with ||u — 7|, <
Then ||2u — 2r||, < 1 and so by lemma 3.8 we have 2u — 2r € L* and F(2u — 2r) <

1

5-

2|lu—7| < 1. As 2r € L¥, convexity ensures that u = 1 [(2u — 2r) + 2r] € LF.
Theorem 3.15 The space EF [0, 1] is separable.

Proof. First note that if v is a bounded function with ||u||_, = M then by Lousin’s theorem,
there is a sequence of continuous functions (u,) with |u,||., < M and a sequence of sets
(A,) with z2(A,) < so that u —u, =0 on [0,1] \ 4,. Thus

1
Jun = lle = sup [l ol dp = sup [ Ju, ~ ullo] d
G(v)<1J0 Gv)<1JA,

<2M sup / | dp = 2M || xa, |
G()<1J A,

:2M,u(An)G_1( )—>Oasn—>oo.

% (An)

Now separability follows from the fact that every continuous function is the uniform limit of

polynomials with rational coefficients. m

Definition 3.4 We say that a function uw € L¥ has absolutely continuous norm if and only

if Ve > 0 there is 6 > 0 such that |[ux || < € for any measurable set A with pu(A) < 6.
Theorem 3.16 A function u € L¥ has absolutely continuous norm if and only if v € EF.

Proof. Suppose that u € L’ has absolutely continuous norm. Since v € L! then p ([Ju| > n]) —
0 as n — oo and thus Hu - “X[IU\Sn]”F = HUXHU\M]”F — 0 as n — 0o. As each of the func-

tions uX(ju|<n] is bounded, the forward direction is established.

£

Now suppose that u € E”. Fix ¢ > 0 and choose a bounded function r with ||u —r|/, < 5.

Let M = ||r||,, and choose d > 0 such that G~" (1) < -5, whenever 0 < |z| < § (after

all lim, o zG~! (1) = 0). Now for any measurable set A with p(A) < & we have ||xal|p =

pw(A) G (L5 ) < 55 thanks to example 3.1. Thus
u(A) 2M

€ 9
luxallp < (= r) xallp + lrxalle < llu =rllp + Mlxallp <5+ 5 =¢
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and so we are done. ®m
We now turn our attention to N-functions that do not satisfy the Ay condition. In the

following important example we follow the lead of B. Turett in [6]:
Example 3.4 Suppose that F' ¢ As. Then, choose an increasing sequence of numbers (ay)
satisfying

o lim; , ap = 00

o [7(2a;) > 281 F (ay)

Since (Q, X, u) is non-atomic, choose a sequence of pairwise disjoint measurable sets (Ay)

with p(Ag) = Let uy, = agxa, and observe that

1
2kF(ay)*

L F(uy) = [o F () dp = 3¢ < 1 while F (2uy) = [, F (2ax) dp > 257 F (ag) p (Ax) =

Thus 5 < Jwel| gy < 1.

2. F (302 un) = 1 and thus |32 well gy = 1. Thus it follows from (1), that 3707, up

does not have absolutely continuous norm and so > oo u, ¢ EF.
3. The function 2350 uy ¢ L

4. The map T : (> — LY defined by T (x,) = > o) Tpuy is an isomorphism:

Z LU
(F)

On the other hand if |xy,| > 3 ||(x,)], we have

o0

>

k=1

= [I(zn)ll

(F)

= [I(zn)ll s

(F)

1T ()l () = | ()

1 1
2 llewurllry 2 5 1(@a)lloe lurll gy 2 7 (@)l
(F)

In fact with a bit more work we can get an_isometric copy of {>° inside L¥. Here is

1T ()l

how:

Split Q into pairwise disjoint sets (Ay,) with 1 (A,) = 5. Again since F' ¢ Ay, choose
an increasing sequence of numbers (ay) satisfying limg_ .., ax = oo and F (lerl k) >
2P (a1,). Now inside each A, choose a sequence of pairwise disjoint sets (Afl) with

1 (Afl) = 2% . Wl(ak) and let u, =Y oo, arXxay. Notice that
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(a) For each n, F (u,) fﬂ (un) dp = in Yet if ¢ > 1 we have that F (cay) >

F (5lay) > 28 F (ay,) for large enough k and so F (cu,) = co. Thus [tnll(py =1

(b) F (S5 un) = 1 and thus |57 | ) = 1.

(c) The map T : (> — L defined by T (x,) = > o | Tnly, s an isometry:

n=1
1T (zn) | ) = @)oo D k]| = 1)l
(F) (F) k=1 (F)
on the other hand
1T (@)l py > Sup lrurll py = Sl;plwkl Nl gy = (@)l
(F)

Thus we have
Proposition 3.17 The following are equivalent for an N-function F':
1. LF[0,1] is separable
2. LF = EF
3. LF =LF
4. Every function v € LY has absolutely continuous norm

5. F e Ay

3.4 Orlicz spaces are dual spaces

Theorem 3.18 If F' and G are complementary N -functions then (EF, ||||(F)> = (L9 |Il¢)
and (B7,|117)" = (L9l ).

Proof. First notice that for each v € L% the map p : u — fQ uvdy defines a bounded
linear functional in (EF Il (F) . Furthermore by Hélder’s inequality, ||p|| < |lv|l5. Now
since [[v]|; = supy, (<l | [ uvdpl, for each & > 0 choose uy with [Jug||(m < 1 and |[v]|, <

UQ U du‘+§. Then for sufficiently large n we have that [, [ugv| du < f[|u0|<n] lugv| dp+5 =
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Jo |X[|u0|§n}UO’U| dp + 5. Hence by setting uy = sign (v) X{jug|<n] || we have that u; € EF

and [l | ) < [luolle < 1 and so

£ £
vlla < '/ uovdu‘ + 3 < / lugv| dp + 3 < / |X[|uo\§n]uov} du+e=pu)+e<|pll+e
0 0 0

Therefore |[v||, = ||pl|-
Now if p € (EF, HH(F)>* define A (E) = p(xg) for all E € ¥. Then

Il
-1 (_1_
F <H(E)>

Thus A is absolutely continuous with respect to p and so by the Radon-Nicodym theorem,

AE)] = lp Oxe)l < llell Ixell gz = — 0 uniformly as u(E) — 0

there is v € L' (1) so that p(xg) = A(E) = [, xgvdu for all E € X. Since the simple
functions are dense in E¥ we have that p (u) = [, uvdp for all uw € E¥. Furthermore, for all

u € L we have that

/ uvdp' < [ |uv|dp < lim inf / luv|dp < ||p|| sup HX[|U|S"]UH(F)
9 9 ful <] n

n—oo

< |lpl[ lJul[ ) < oo thanks to Fatou’s lemma

and so v € L.

A similar argument establishes the fact that (ET, ||| )" = <LG, ||-||(G)>. n
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