
Math 42001, Homework Set 5, Solutions

Problems 2.4; 13, 19, 2.5; 1, 6, 12, 14, 15, 16, 17, 27, 29, 52

November 26, 2006

p. 64, #13 Find the orders of all the elements of U18. Is U18 cyclic?

Solution. Notice that , U18 = {[1], [5], [7], [11], [13], [17]} and

52 ≡ 7 (mod 18) 72 ≡ 13 (mod 18) 112 ≡ 13 (mod 18) 132 ≡ 7 (mod 18) 172 ≡ 1 (mod 18)

53 ≡ 17 (mod 18) 73 ≡ 1 (mod 18) 113 ≡ 17 (mod 18) 133 ≡ 1 (mod 18)

54 ≡ 13 (mod 18) 114 ≡ 7 (mod 18)

55 ≡ 11 (mod 18) 115 ≡ 5 (mod 18)

56 ≡ 1 (mod 18) 116 ≡ 1 (mod 18)

Hence o ([1]) = 1, o ([5]) = 6, o ([7]) = 3, o ([11]) = 6, o ([13]) = 3, o ([17]) = 2 and so U18 = ([5]) =

([11]) is cyclic.

p. 65, #19 Find all the distinct conjugacy classes of S3.

Solution. S3 =


1 2 3

1 2 3

 ,

1 2 3

2 1 3

 ,

1 2 3

3 2 1

 ,

1 2 3

1 3 2

 ,

1 2 3

2 3 1

 ,

1 2 3

3 1 2


and S3 has the following 3 distinct conjugacy classes:

1 2 3

1 2 3

 ,


1 2 3

2 1 3

 ,

1 2 3

3 2 1

 ,

1 2 3

1 3 2

 ,


1 2 3

2 3 1

 ,

1 2 3

3 1 2

. Check

it!
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p. 65, #30 If in G a5 = e and aba−1 = b2, find o(b) if b 6= e.

Solution. Recall that
(
aba−1

)k = abka−1 for all positive integers k. With this in hand, we have

aba−1 = b2 =⇒ ab16a−1 = b32 =⇒ a
(
b2

)8
a−1 = b32 =⇒ a

(
aba−1

)8
a−1 = b32

=⇒ a2b8a−2 = b32 =⇒ a2
(
b2

)4
a−2 = b32 =⇒ a2

(
aba−1

)4
a−2 = b32

=⇒ a3b4a−3 = b32 =⇒ a3
(
b2

)2
a−3 = b32 =⇒ a3

(
aba−1

)2
a−3 = b32

=⇒ a4b2a−4 = b32 =⇒ a4aba−1a−4 = b32 =⇒ a5ba−5 = b32

=⇒ b = b32 =⇒ e = b31

Hence o (b) | 31 and since 31 is prime we have that o (b) = 1 or 31. As b 6= e we are forced to conclude

that o (b) = 31.

p. 73, #1 Determine in each of the parts if the given mapping is a homomorphism. If so, identify its kernel and

whether or not the mapping is 1-1 or onto.

a) G = Z under +, G′ = Zn, ϕ(a) = [a] for a ∈ Z.

Claim: ϕ is an epimorphism, yet not a monomorphism.

Proof: Let a, b ∈ G. Notice that ϕ(a+b) = [a+b] = [a]+[b] = ϕ(a)+ϕ(b). Hence ϕ is a homomorphism.

Now fix 1 ≤ a ≤ n. Then [a] ∈ G′ =⇒ a ∈ G and ϕ(a) = [a] . Hence ϕ is epimorphic. Now,

ker(ϕ) = {a ∈ Z | [a] = [0]} = {a ∈ Z | n | a} = {nk | k ∈ Z}. Since ker(ϕ) 6= (0), this homomorphism

is not 1-1.

b) G a group, ϕ : G 7−→ G defined by ϕ(a) = a−1 for a ∈ G.

ϕ is not a homomorphism in general. In fact, ϕ is a homomorphism iff G is abelian:

First, if G is abelian and a, b ∈ G then ϕ(ab) = (ab)−1 = b−1a−1 = a−1b−1 = ϕ(a)ϕ(b) and so ϕ is an

endomorphism.

Conversely, if ϕ is an endomorphism, and a, b ∈ G then ab = ϕ((ab)−1) = ϕ(b−1a−1) = ϕ(b−1)ϕ(a−1) =

ba fact that establishes the abelian nature of G. Hence if G = Sn for n ≥ 3, ϕ is not a homomorphism.

c) G abelian group, ϕ : G 7−→ G defined by ϕ(a) = a−1.

Claim: ϕ is an epimorphic monomorphism whose kernel is the set {e}.

We have established in part (b) that ϕ is a homomorphism. Now let a ∈ G. Then a−1 ∈ G, and

ϕ(a−1) = (ϕ(a))−1 = (a−1)−1 = a. Hence ϕ is epimorphic. Now, ker(ϕ) = {x ∈ G | ϕ(x) = e} = {x ∈

G | x−1 = e} = {x ∈ G | x = e} = {e} and so ϕ is 1-1. Therefore ϕ ∈ Aut (G).
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d) G group of all nonzero real numbers under multiplication, G′ = {−1, 1}, ϕ(r) = 1 if r is positive,

ϕ(r) = −1 if r is negative.

Claim: ϕ is an epimorphism whose kernel is the set {x ∈ R | x > 0}.

Proof: Let r1, r2 ∈ R\{0}. Notice that ϕ(r1r2) has three cases to work out. Case I: r1, r2 > 0 in which

ϕ(r1r2) = 1 = 1 · 1 = ϕ(r1)ϕ(r2). Case II: Either r1 > 0 and r2 < 0 or r1 < 0 and r2 > 0. Then

ϕ(r1r2) = −1 = −1 · 1 = ϕ(r1)ϕ(r2). Case III: r1, r2 < 0. Then ϕ(r1r2) = 1 = −1 · −1 = ϕ(r1)ϕ(r2).

Hence ϕ is a homomorphism. Now, fix x ∈ G′. Then x = −1 or x = 1. If x = 1, then fix r > 0 and

ϕ(r) = 1 = x. If x = −1, then fix r < 0 and ϕ(r) = −1 = x. From this it is not only clear that ϕ

is epimorphic, but also that ϕ is NOT monomorphic, as r can be any positive real number and still

map to 1; r can be any negative real number and still map to -1. Finally ker(ϕ) = {x ∈ G | ϕ(x) =

1} = {x ∈ R | x > 0} . (This solution is entirely based on the assumption that G′ is taken under

multiplication also.)

e) G an abelian group, n > 1 a fixed integer, and ϕ : G 7−→ G defined by ϕ(a) = an for a ∈ G.

Note that for a, b ∈ G we have that ϕ(ab) = (ab)n = anbn = ϕ(a)ϕ (b) thanks to the abelian nature

of G. Hence, ϕ is an endomorphism. Furthermore, ker (ϕ) = {a ∈ G | an = e} = {a ∈ G | o (a) | n}.

In general, nothing further can be said about ϕ. If for example, the order of every element in G is a

divisor of n, then ϕ is trivial. If on the other hand (n, |G|) = 1 then ϕ ∈ Aut (G).

p. 74, #6 Prove that if ϕ : G 7−→ G′ is a homomorphism, then ϕ(G), the image of G, is a subgroup of G′.

Proof. First notice that ϕ(G) is nonempty, as ϕ(e) = e. So let a′, b′ ∈ ϕ(G). This implies that ∃a, b ∈ G

such that ϕ(a) = a′ and ϕ(b) = b′. Since ab ∈ G, we have ϕ(ab) = ϕ(a)ϕ(b) = a′b′ ∈ ϕ(G). Now, let

a′ ∈ ϕ(G). Then∃a ∈ G such that ϕ(a) = a′. But ϕ(a−1) = (ϕ(a))−1 = (a′)−1 ∈ ϕ(G). Therefore ϕ(G)

is a subgroup of G′.

p. 74, #12 Prove that if Z(G) is the center of G, then Z(G) C G.

Proof. First we must show that Z(G) ≤ G. This is not difficult, since we already have e ∈ Z(G). Now

let z1, z2 ∈ Z(G). Then fix x ∈ G. Notice that xz1z2 = z1xz2 = z1z2x, so Z(G) has closure. Now let

z ∈ Z(G). Then z−1 ∈ G clearly. Let x ∈ G, and notice that xz−1 = (zx−1)−1 = (x−1z)−1 = z−1x.

Hence z−1 ∈ Z(G). So, we have established that Z(G) ≤ G. Now we fix z ∈ Z(G), and let x ∈ G.

Notice that x−1zx = x−1xz = z ∈ Z(G). Hence Z(G) C G.

p. 74, #14 If G is abelian and ϕ : G 7−→ G′ is a homomorphism of G onto G′, prove that G′ is abelian.

Proof. Fix a′, b′ ∈ G′. Since ϕ is onto, ∃a, b ∈ G such that ϕ(a) = a′ and ϕ(b) = b′. Now, a′b′ =

ϕ(a)ϕ(b) = ϕ(ab) = ϕ(ba) = ϕ(b)ϕ(a) = b′a′. Therefore G′ is abelian.
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p. 74, #15 If G is any group, N C G, and ϕ : G 7−→ G′ a homomorphism of G onto G′, prove that the image,

ϕ(N), of N is a normal subgroup of G′.

Proof. The fact that ϕ(N) ≤ G′, is established on problem (6) since ϕ|N : N → G′ is a group

homomorphism. To see that ϕ(N) C G′, fix a′ ∈ ϕ(N) and x′ ∈ G′.Since ϕ is surjective, there are

x ∈ G and a ∈ N such that ϕ(x) = x′ and ϕ(a) = a′. Since N C G, we have xax−1 ∈ N and so

x′a′(x′)−1 = ϕ(x)ϕ(a) (ϕ(x))−1 = ϕ(x)ϕ(a)ϕ(x−1) = ϕ(xax−1) ∈ ϕ(N).Therefore ϕ(N) C G′.

p. 74, #16 If N C G and M C G and MN = {mn | m ∈ M, n ∈ N}, prove that MN is a subgroup of G and that

MN C G.

Proof. Clearly e ∈ MN as e ∈ M and e ∈ N and e = ee. Now let m1, m2 ∈ M and n1, n2 ∈

N . Then (m1n1) (m2n2)
−1 = m1n1n

−1
2 m2

−1 =
(
m1m

−1
2

) (
m2n1n

−1
2 m2

−1
)
∈ MN since m1m

−1
2 ∈

M, m2

(
n1n

−1
2

)
m−1

2 ∈ N, thanks to the normality of N in G. Hence, MN ≤ G. Now for m ∈ M, n ∈

N, and x ∈ G we have that xmnx−1 =
(
xmx−1

) (
xnx−1

)
∈ MN since N C G and M C G, ensures

that xmx−1 ∈ M and xnx−1 ∈ N .

p. 74, #17 If M C G, N C G, prove that M ∩N C G.

Proof. First we must establish that M ∩N ≤ G. Clearly e ∈ M ∩N since e ∈ M and e ∈ N. Next let

a, b ∈ M ∩N. Therefore ab ∈ M, and ab ∈ N, which implies ab ∈ M ∩N. Finally, let a ∈ M ∩N. Then

a ∈ M , a ∈ N =⇒ a−1 ∈ M , a−1 ∈ N =⇒ a−1 ∈ M ∩N. Therefore M ∩N ≤ G. Now, fix a ∈ M ∩N

and let x ∈ G. Since M C G, N C G, x−1ax ∈ M and x−1ax ∈ N. Therefore x−1ax ∈ M ∩N, and we

have that M ∩N C G.

p. 75, #27 If θ is an automorphism of G and N C G, prove that θ(N) C G.

Proof. This is a special case of problem (15).
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p. 76, #29 A subgroup T of a group W is called characteristic if ϕ(T ) ⊂ T for all automorphisms, ϕ, of W. Prove

that:

a) M characteristic in G implies that M C G.

b) M,N characteristic in G implies MN characteristic in G.

c) A normal subgroup of a group need not be characteristic. (This is quite hard; you must find an example

of a group G and a noncharacteristic normal subgroup).

Solution. We establish the following small auxiliary result:

Lemma 1 Let G be a group and g ∈ G. Then the map αg : G → G defined by αg (x) = gxg−1

is an automorphism of Ġ. In fact, αg is called an inner automorphism of G. The set of all inner

automorphisms of G is denoted by Inn (G) and it is a normal subgroup of Aut (G) , the group of all

automorphisms of G.

Proof of lemma. For x, y ∈ G we have that αg (xy) = gxyg−1 =
(
gxg−1

) (
gyg−1

)
= αg (x) αg (y) ,

fact that establishes the endomorphic nature of αg. Furthermore, ker(αg) = {x ∈ G | αg(x) = e} =

{x ∈ G | gxg−1 = e} = {x ∈ G | gx = g} = {x ∈ G | x = e} = {e} and so αg is injective. Also for

any y ∈ G we have that g−1yg ∈ G and αg

(
g−1yg

)
= gg−1ygg−1 = y, fact that makes αg surjective.

Hence αg ∈ Aut (G). We now establish the rest of the lemma even though it is not necessary for this

exercise:

Note that iG = αe ∈ Inn (G). Furthermore for g, h, x ∈ G, we have that
(
αg ◦ αg−1

)
(x) =

αg

(
αg−1 (x)

)
= αg

(
g−1xg

)
= gg−1xgg−1 = x and

(
αg−1 ◦ αg

)
(x) = αg−1 (αg (x)) = αg−1

(
gxg−1

)
=

g−1gxg−1g = x and so αg ◦αg−1 = αg−1 ◦αg = iG. Hence α−1
g = αg−1 ∈ Inn (G). Also (αg ◦ αh) (x) =

αg (αh (x)) = αg

(
hxh−1

)
= ghxh−1g−1 = (gh)x (gh)−1 = αgh (x). It follows then that αg ◦ αh =

αgh ∈ Inn (G). Thus so far we have established that Inn (G) ≤ Aut (G). It remains to show that

Inn (G) C Aut (G). So fix g, x ∈ G and f ∈ Aut (G). Then
(
f ◦ ag ◦ f−1

)
(x) = f

(
ag

(
f−1 (x)

))
=

f
(
gf−1 (x) g−1

)
= f (g) f

(
f−1 (x)

)
f

(
g−1

)
= [f (g)]x [f (g)]−1 = αf(g) (x). Thus f ◦ ag ◦ f−1 =

αf(g) ∈ Inn (G) and the normality is established.

a) Let x ∈ G. By the lemma αx ∈ Aut (G) and since M is characteristic in G, we have that

xMx−1 = αx (M) ⊂ M . Thus M C G.

b) From problem (16) and part (a) we know that MN C G. In order to see that MN is characteristic

in G, let ϕ ∈ Aut (G), m ∈ M, and n ∈ N. As both M,N are characteristic in G, we conclude

that ϕ (m) ∈ M and ϕ (n) ∈ N forcing ϕ (mn) = ϕ (m)ϕ (n) ∈ MN . Thus, ϕ (MN) ⊂ MN and

so MN is characteristic in G.
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c) Consider the group R of real numbers under addition and its subgroup Z of integers. Since R is

abelian then all its subgroups, and in particular Z, are normal. Now it is easy to see that the map

f : R → R defined by f (x) = x
2 is an automorphism of R. On the other hand f (Z) 6⊂ Z since

f (1) = 1
2 6∈ Z.

p. 77, #52 Let G be a finite group and ϕ an automorphism of G such that ϕ (x) = x−1 for more than

three-fourths of the elements of G. Prove that ϕ (y) = y−1 for all y ∈ G, and so G is abelian.

Proof. Define S =
{
x ∈ G | ϕ (x) = x−1

}
and fix g ∈ S. Define Sg−1 =

{
xg−1 ∈ G | x ∈ S

}
. Observe

that the map λ : S → Sg−1 defined by λ (x) = xg−1 for all x ∈ S is injective, for if λ (x1) = λ (x2) for

some x1, x2 ∈ S then x1g
−1 = x2g

−1 and so x1 = x2 by cancellation. Hence
∣∣Sg−1

∣∣ ≥ |S| > 3
4 |G|.

Therefore |G| ≥
∣∣S ∪ Sg−1

∣∣ = |S|+
∣∣Sg−1

∣∣−∣∣S ∩ Sg−1
∣∣ > 3

4 |G|+
3
4 |G|−

∣∣S ∩ Sg−1
∣∣ = 3

2 |G|−
∣∣S ∩ Sg−1

∣∣
and so

∣∣S ∩ Sg−1
∣∣ > 1

2 |G|. Note that if y ∈ S ∩ Sg−1 then there is an x ∈ S such that y = xg−1 and

ϕ (y) = y−1. It follows then that gy = ϕ
(
g−1

)
ϕ

(
y−1

)
= ϕ

(
g−1y−1

)
= ϕ

(
(yg)−1

)
= ϕ

(
x−1

)
= x =

yg. Hence S ∩ Sg−1 ⊂ C (g) , the centralizer of g in G. Thus |C (g)| ≥
∣∣S ∩ Sg−1

∣∣ > 1
2 |G| and by

Lagrange’s Theorem we conclude that C (g) = G which means that g ∈ Z (G) the center of G. Hence

S ⊂ Z (G) and so |Z (G)| ≥ |S| > 3
4 |G| . By Lagrange’s Theorem once more, we are forced to conclude

that Z (G) = G, fact that makes G abelian. To finish the problem we claim that S ≤ G: Clearly e ∈ S

and for x, y ∈ S we have that ϕ
(
xy−1

)
= ϕ (x) ϕ

(
y−1

)
= x−1y = yx−1 =

(
xy−1

)−1 establishing the

fact that xy−1 ∈ S. By Lagrange’s theorem one more time, we conclude that S = G.
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