Math 42001, Homework Set 5, Solutions
Problems 2.4; 13, 19, 2.5; 1, 6, 12, 14, 15, 16, 17, 27, 29, 52

November 26, 2006

p- 64, #13 Find the orders of all the elements of Uig. Is Uig cyclic?
Solution. Notice that , Uis = {[1], [5], [7], [11], [13], [17]} and
52 = 7(mod 18)  7? =13 (mod18) 112 =13 (mod18) 132=7(mod18) 172 =1 (mod18)
53 =17(mod18) 73=1(mod18) 113 =17(mod18) 133 =1 (mod 18)

5% = 13 (mod 18) 11* = 7 (mod 18)
5% = 11 (mod 18) 11° = 5 (mod 18)
5% = 1 (mod 18) 115 =1 (mod 18)

Hence o ([1]) =1, o([5]) =6, o([7]) =3, o([11]) =6, o([13]) =3, o([17]) = 2 and so Us = ([5]) =
([11]) is cyclic.

p- 65, #19 Find all the distinct conjugacy classes of S3.

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Solution. S3 = , , ; ) )
1 2 3 2 1 3 3 2 1 1 3 2 2 3 1 31 2

and S3 has the following 3 distinct conjugacy classes:
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p. 65, #30 If in G a® = e and aba~! = b2, find o(b) if b # e.
Solution. Recall that (aba_l)k = abFfa~" for all positive integers k. With this in hand, we have

aba™' = b = ab®a! = b = a (b2)8 a =02 =a (aba_1)8 a~t =%

_ 4 _ _1\4 _
a268a 2 _ b32 : a2 (b2) a 2 _ b32 CL2 (aba 1) a 2 _ b32
_ 2 _ _1\2 _
a3b4a 3 — b32 a3 (b2) a 3 — b32 a3 (aba 1) a 3 — b32
a4b2a_4 — b32 a4aba_1a_4 — b32 a5ba_5 — b32

= b=b"? = ="

Hence o (b) | 31 and since 31 is prime we have that o (b) =1 or 31. As b # e we are forced to conclude

that o (b) = 31.

p- 73, #1 Determine in each of the parts if the given mapping is a homomorphism. If so, identify its kernel and

whether or not the mapping is 1-1 or onto.

a) G =7Z under +, G' = Z,, ¢(a) = [a] for a € Z.
Claim: ¢ is an epimorphism, yet not a monomorphism.
Proof: Let a,b € G. Notice that ¢(a+b) = [a+b] = [a]+[b] = ¢(a)+¢(b). Hence ¢ is a homomorphism.
Now fix 1 < a < n. Then [a] € G’ = a € G and ¢(a) = [a] . Hence ¢ is epimorphic. Now,
ker(p)={a€Z|[a] =01} ={a €Z|n|a} ={nk|k € Z}. Since ker(¢) # (0), this homomorphism
is not 1-1.

b) G a group, ¢ : G — G defined by p(a) =a~*! for a € G.
© is not a homomorphism in general. In fact, ¢ is a homomorphism iff G is abelian:
First, if G is abelian and a, b € G then ¢(ab) = (ab)™' =b"ta"! = a7'b7! = p(a)p(b) and so ¢ is an
endomorphism.
Conversely, if ¢ is an endomorphism, and a, b € G then ab = ¢((ab) ") = p(b~'a™") = (b~ )p(a~!) =
ba fact that establishes the abelian nature of G. Hence if G = .S, for n > 3, ¢ is not a homomorphism.

c) G abelian group, ¢ : G — G defined by ¢(a) = a~!.

Claim: ¢ is an epimorphic monomorphism whose kernel is the set {e}.

We have established in part (b) that ¢ is a homomorphism. Now let @ € G. Then a=! € G, and
o(a™1) = (¢(a))™! = (a71)~! = a. Hence ¢ is epimorphic. Now, ker(p) = {z € G | p(z) = e} = {z €
Glz7'=e}={r€G|z=ce}={e} and so ¢ is 1-1. Therefore p € Aut (G).



d) G group of all nonzero real numbers under multiplication, G’ = {—1,1}, ¢(r) = 1 if r is positive,

o(r) = —1 if r is negative.
Claim: ¢ is an epimorphism whose kernel is the set {z € R | z > 0}.

Proof: Let 71,72 € R\{0}. Notice that ¢(rir2) has three cases to work out. Case I: 71,79 > 0 in which
p(rire) =1 =1-1 = ¢(r1)p(re). Case II: Either r; > 0 and r5 < 0 or 7y < 0 and ro > 0. Then
p(rire) = =1 = —=1-1 = @(r1)e(re). Case III: r1,r3 < 0. Then p(riry) =1 = —1-—1 = p(r1)p(ra).
Hence ¢ is a homomorphism. Now, fix x € G’. Then x = —1 or z = 1. If z = 1, then fix » > 0 and
o(r) =1 =z If £ = —1, then fix r < 0 and ¢(r) = —1 = z. From this it is not only clear that ¢
is epimorphic, but also that ¢ is NOT monomorphic, as r can be any positive real number and still
map to 1; 7 can be any negative real number and still map to -1. Finally ker(p) = {z € G | ¢(z) =
1} = {z € R |z > 0} . (This solution is entirely based on the assumption that G’ is taken under

multiplication also.)

e) G an abelian group, n > 1 a fixed integer, and ¢ : G — G defined by ¢(a) = a™ for a € G.

p. 74, #6

p. 74, #12

p. 74, #14

Note that for a, b € G we have that ¢(ab) = (ab)" = a™b" = p(a)p (b) thanks to the abelian nature
of G. Hence, ¢ is an endomorphism. Furthermore, ker (¢) = {a € G |a" =e} ={a € G| o(a) | n}.
In general, nothing further can be said about ¢. If for example, the order of every element in G is a

divisor of n, then ¢ is trivial. If on the other hand (n, |G|) =1 then ¢ € Aut (G).

Prove that if ¢ : G — G’ is a homomorphism, then ¢(G), the image of G, is a subgroup of G'.

Proof. First notice that ¢(G) is nonempty, as ¢(e) = e. So let a’, b’ € ¢(G). This implies that Ja,b € G
such that ¢(a) = o’ and p(b) = . Since ab € G, we have ¢(ab) = p(a)p(b) = a’'V’ € ¢(G). Now, let
a' € ¢(G). Thenda € G such that p(a) = a’. But p(a™1) = (¢(a))™! = (/)7 € p(G). Therefore p(G)

is a subgroup of G'. m

Prove that if Z(QG) is the center of G, then Z(G) < G.

Proof. First we must show that Z(G) < G. This is not difficult, since we already have e € Z(G). Now
let 21,29 € Z(G). Then fix © € G. Notice that xz129 = 21222 = 21222, so Z(G) has closure. Now let
z € Z(G). Then 27! € G clearly. Let z € G, and notice that zz7! = (22717 = (27 12)7! = 2712
Hence 27! € Z(G). So, we have established that Z(G) < G. Now we fix z € Z(G), and let z € G.
Notice that 27122 = 27122 = 2 € Z(G). Hence Z(G) < G. m

If G is abelian and ¢ : G — G’ is a homomorphism of G onto G’, prove that G’ is abelian.

Proof. Fix o/, € G'. Since ¢ is onto, Ja,b € G such that ¢(a) = o’ and p(b) = V. Now, a'b’ =
w(a)p(b) = p(ab) = p(ba) = (b)p(a) = b'a’. Therefore G’ is abelian. m



p. 74, #15

p. 74, #16

p. T4, #17

p.- 75, #27

If G is any group, N <1 G, and ¢ : G — G’ a homomorphism of G onto G’, prove that the image,
©(N), of N is a normal subgroup of G'.

Proof. The fact that ¢(N) < G, is established on problem (6) since ¢|y : N — G’ is a group
homomorphism. To see that p(N) < G/, fix ¢’ € ¢(N) and 2/ € G'.Since ¢ is surjective, there are

r € G and a € N such that ¢(z) = 2’ and p(a) = a’. Since N <1 G, we have raz~! € N and so
2 (2') 1 = p(@)p(a) (p(@)) " = p(@)p(a)p(a!) = plzaz) € p(N) Therefore p(N) < G'.

IfN<Gand M <G and MN = {mn|m € M,n € N}, prove that M N is a subgroup of G and that
MN <« G.

Proof. Clearly e € MN as e € M and e € N and e = ee. Now let my, mo € M and nq, ny €

N. Then (ming) (ang)_l = mlnlnglmg’l

= (mlmz_l) (mgnlnglmg’l) € MN since mlmgl €
M, mso (nm;l) m;l € N, thanks to the normality of NV in G. Hence, MN < G. Now form € M, n €
N, and z € G we have that zmna~! = (wmx_l) (mnx_l) € MN since N <« G and M < G, ensures

that zmz~' € M and znz= ' € N. =

If M <G, N <G, prove that M NN < G.

Proof. First we must establish that M NN < G. Clearly e € M N N since e € M and e € N. Next let
a,b € M NN. Therefore ab € M, and ab € N, which implies ab € M N N. Finally, let a € M N N. Then
acEM,ace N=a'eM,a' € N=a"! € MNN. Therefore M NN < G. Now, fix a € M NN
and let x € G. Since M < G, N < G, " 'ax € M and 2 'ax € N. Therefore x 'az € M N N, and we
have that M NN < G. =

If 0 is an automorphism of G and N < G, prove that §(N) < G.

Proof. This is a special case of problem (15). =



p. 76, #29 A subgroup T of a group W is called characteristic if o(T) C T for all automorphisms, ¢, of W. Prove
that:

a) M characteristic in G implies that M < G.
b) M, N characteristic in G implies M N characteristic in G.

¢) A normal subgroup of a group need not be characteristic. (This is quite hard; you must find an example

of a group G and a noncharacteristic normal subgroup).

Solution. We establish the following small auxiliary result:

Lemma 1 Let G be a group and g € G. Then the map ay : G — G defined by o, (z) = grg™?

is an automorphism of G. In fact, ayg s called an inner automorphism of G. The set of all inner
automorphisms of G is denoted by Inn (G) and it is a normal subgroup of Aut (G), the group of all

automorphisms of G.

Proof of lemma. For z, y € G we have that o, (zy) = gryg~! = (gxg_l) (gyg‘l) =g (z) ag (y),

fact that establishes the endomorphic nature of ay. Furthermore, ker(ay) = {z € G | ay(z) = e} =

1

{reGlgrg ' =el={xecG|gr=yg}={xrec G|z =c¢e}={e} and so o, is injective. Also for

I = ¢, fact that makes o surjective.

any y € G we have that g7 'yg € G and o (g’lyg) =99 'ygg9~
Hence oy € Aut (G). We now establish the rest of the lemma even though it is not necessary for this
exercise:

Note that i¢ = a. € Inn(G). Furthermore for g, h, © € G, we have that (agoay-1)(z) =

ay (a1 (2)) = a4 (97 2g) = g9 wgg™

g 'grg™g =2 and s0 g 0 g1 = g1 0 g = ig. Hence o' = g1 € Inn (G). Also (ag 0 o) () =

V=g and (ag-10ay) (2) = a1 (ay (2)) = ag-1 (gzg™!) =
ag (ap () = a4 (hah™') = ghah™'g™! = (gh)z (gh)™" = agn (z). It follows then that agy 0 ap, =
agn € Inn(G). Thus so far we have established that Inn (G) < Aut (G). It remains to show that
Inn (G) < Aut (G). So fix g, z € G and f € Aut(G). Then (foago f71) (z) = f(ag (f7(2))) =

Flaf@a™) = f@f (@) g = [f@lzlf (9] = apg (x). Thus foago f =
af(g) € Inn (G) and the normality is established. m

a) Let « € G. By the lemma a,; € Aut(G) and since M is characteristic in G, we have that
zMzx~! =, (M) C M. Thus M < G.

b) From problem (16) and part (a) we know that M N < G. In order to see that M N is characteristic
in G, let ¢ € Aut (G), m € M, and n € N. As both M, N are characteristic in G, we conclude
that ¢ (m) € M and ¢ (n) € N forcing ¢ (mn) = ¢ (m)p(n) € MN. Thus, ¢ (MN) C MN and

so M N is characteristic in G.



¢) Consider the group R of real numbers under addition and its subgroup Z of integers. Since R is
abelian then all its subgroups, and in particular Z, are normal. Now it is easy to see that the map

[ : R — R defined by f(z) = 5 is an automorphism of R. On the other hand f(Z) ¢ 7Z since
f)y=3¢L.

p. 77, #52 Let G be a finite group and ¢ an automorphism of G such that ¢ (x) = x=1 for more than
three-fourths of the elements of G. Prove that ¢ (y) = y~* for all y € G, and so G is abelian.

Proof. Define S = {z € G | ¢ (z) =27 '} and fix g € S. Define Sg~! = {zg~' € G | x € S}. Observe
that the map A : S — Sg~! defined by A (x) = zg~! for all z € S is injective, for if X (z1) = A (z2) for
some x1, T € S then 197! = x99~ ! and so 1 = x5 by cancellation. Hence |Sg*1| > |S| > 2G|
Therefore |G| > |SUSg™t = [S|+|Sg7H—[SNSg™| > 3|G|+2 |G|-|SNSg~H =2 |G|-|SN Sg™!|
and so ‘S N Sg_1’ > 1|G|. Note that if y € SN Sg~! then there is an x € S such that y = zg~! and
¢ (y) =y ' It follows then that gy = ¢ (97 ) e (™) =@ (g7 'y™') = ¢ ( ) o(z7h) =

yg. Hence SN Sg=! C C(g), the centralizer of g in G. Thus |C (g)| > |SﬂSg*1| > 1|G| and by
Lagrange’s Theorem we conclude that C'(g) = G which means that g € Z (G) the center of G. Hence
S C Z(G)andso |Z(G)| > |S| > 3|G|. By Lagrange’s Theorem once more, we are forced to conclude
that Z (G) = G, fact that makes G abelian. To finish the problem we claim that S < G: Clearly e € S
and for z, y € S we have that ¢ (xy’l) =p(x)e (y’l) =z ly=yx! = (acy’l)f1 establishing the

fact that zy~! € S. By Lagrange’s theorem one more time, we conclude that S = G. =



