Math 42001, Homework Set 5, Solutions

Problems 2.4; 13, 19, 2.5; 1, 6, 12, 14, 15, 16, 17, 27, 29, 52

November 26, 2006

p. 64, #13 Find the orders of all the elements of U_{18} . Is U_{18} cyclic?

Solution. Notice that , $U_{18} = \{[1], [5], [7], [11], [13], [17]\}$ and

 $\begin{array}{lll} 5^2 \equiv 7 \ (\bmod{18}) & 7^2 \equiv 13 \ (\bmod{18}) & 11^2 \equiv 13 \ (\bmod{18}) & 13^2 \equiv 7 \ (\bmod{18}) & 17^2 \equiv 1 \ (\bmod{18}) \\ 5^3 \equiv 17 \ (\bmod{18}) & 7^3 \equiv 1 \ (\bmod{18}) & 11^3 \equiv 17 \ (\bmod{18}) & 13^3 \equiv 1 \ (\bmod{18}) \\ 5^4 \equiv 13 \ (\bmod{18}) & 11^4 \equiv 7 \ (\bmod{18}) \\ 5^5 \equiv 11 \ (\bmod{18}) & 11^5 \equiv 5 \ (\bmod{18}) \\ 5^6 \equiv 1 \ (\bmod{18}) & 11^6 \equiv 1 \ (\bmod{18}) \\ \\ \text{Hence} \ o \ ([1]) = 1, \ o \ ([5]) = 6, \ o \ ([7]) = 3, \ o \ ([11]) = 6, \ o \ ([13]) = 3, \ o \ ([17]) = 2 \ \text{and so} \ U_{18} = ([5]) = \\ ([11]) \ \text{is cyclic.} \end{array}$

p. 65, #19 Find all the distinct conjugacy classes of S_3 .

Solution. $S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$ and S_3 has the following 3 distinct conjugacy classes: $\left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}.$ Check it! p. 65, #30 If in $G a^5 = e$ and $aba^{-1} = b^2$, find o(b) if $b \neq e$.

Solution. Recall that $(aba^{-1})^k = ab^k a^{-1}$ for all positive integers k. With this in hand, we have

$$aba^{-1} = b^{2} \Longrightarrow ab^{16}a^{-1} = b^{32} \Longrightarrow a(b^{2})^{8}a^{-1} = b^{32} \Longrightarrow a(aba^{-1})^{8}a^{-1} = b^{32}$$
$$\implies a^{2}b^{8}a^{-2} = b^{32} \Longrightarrow a^{2}(b^{2})^{4}a^{-2} = b^{32} \Longrightarrow a^{2}(aba^{-1})^{4}a^{-2} = b^{32}$$
$$\implies a^{3}b^{4}a^{-3} = b^{32} \Longrightarrow a^{3}(b^{2})^{2}a^{-3} = b^{32} \Longrightarrow a^{3}(aba^{-1})^{2}a^{-3} = b^{32}$$
$$\implies a^{4}b^{2}a^{-4} = b^{32} \Longrightarrow a^{4}aba^{-1}a^{-4} = b^{32} \Longrightarrow a^{5}ba^{-5} = b^{32}$$
$$\implies b = b^{32} \Longrightarrow e = b^{31}$$

Hence $o(b) \mid 31$ and since 31 is prime we have that o(b) = 1 or 31. As $b \neq e$ we are forced to conclude that o(b) = 31.

- p. 73, #1 Determine in each of the parts if the given mapping is a homomorphism. If so, identify its kernel and whether or not the mapping is 1-1 or onto.
 - **a)** $G = \mathbb{Z}$ under $+, G' = \mathbb{Z}_n, \varphi(a) = [a]$ for $a \in \mathbb{Z}$.

Claim: φ is an epimorphism, yet not a monomorphism.

Proof: Let $a, b \in G$. Notice that $\varphi(a+b) = [a+b] = [a]+[b] = \varphi(a)+\varphi(b)$. Hence φ is a homomorphism. Now fix $1 \leq a \leq n$. Then $[a] \in G' \implies a \in G$ and $\varphi(a) = [a]$. Hence φ is epimorphic. Now, $\ker(\varphi) = \{a \in \mathbb{Z} \mid [a] = [0]\} = \{a \in \mathbb{Z} \mid n \mid a\} = \{nk \mid k \in \mathbb{Z}\}$. Since $\ker(\varphi) \neq (0)$, this homomorphism is not 1-1.

b) G a group, $\varphi: G \longmapsto G$ defined by $\varphi(a) = a^{-1}$ for $a \in G$.

 φ is not a homomorphism in general. In fact, φ is a homomorphism iff G is abelian:

First, if G is abelian and a, $b \in G$ then $\varphi(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = \varphi(a)\varphi(b)$ and so φ is an endomorphism.

Conversely, if φ is an endomorphism, and $a, b \in G$ then $ab = \varphi((ab)^{-1}) = \varphi(b^{-1}a^{-1}) = \varphi(b^{-1})\varphi(a^{-1}) = ba$ fact that establishes the abelian nature of G. Hence if $G = S_n$ for $n \ge 3$, φ is not a homomorphism.

c) G abelian group, $\varphi: G \longmapsto G$ defined by $\varphi(a) = a^{-1}$.

Claim: φ is an epimorphic monomorphism whose kernel is the set $\{e\}$.

We have established in part (b) that φ is a homomorphism. Now let $a \in G$. Then $a^{-1} \in G$, and $\varphi(a^{-1}) = (\varphi(a))^{-1} = (a^{-1})^{-1} = a$. Hence φ is epimorphic. Now, $\ker(\varphi) = \{x \in G \mid \varphi(x) = e\} = \{x \in G \mid x^{-1} = e\} = \{x \in G \mid x = e\} = \{e\}$ and so φ is 1-1. Therefore $\varphi \in \operatorname{Aut}(G)$.

d) G group of all nonzero real numbers under multiplication, $G' = \{-1, 1\}, \varphi(r) = 1$ if r is positive, $\varphi(r) = -1$ if r is negative.

Claim: φ is an epimorphism whose kernel is the set $\{x \in \mathbb{R} \mid x > 0\}$.

Proof: Let $r_1, r_2 \in \mathbb{R} \setminus \{0\}$. Notice that $\varphi(r_1 r_2)$ has three cases to work out. Case I: $r_1, r_2 > 0$ in which $\varphi(r_1 r_2) = 1 = 1 \cdot 1 = \varphi(r_1)\varphi(r_2)$. Case II: Either $r_1 > 0$ and $r_2 < 0$ or $r_1 < 0$ and $r_2 > 0$. Then $\varphi(r_1 r_2) = -1 = -1 \cdot 1 = \varphi(r_1)\varphi(r_2)$. Case III: $r_1, r_2 < 0$. Then $\varphi(r_1 r_2) = 1 = -1 \cdot -1 = \varphi(r_1)\varphi(r_2)$. Hence φ is a homomorphism. Now, fix $x \in G'$. Then x = -1 or x = 1. If x = 1, then fix r > 0 and $\varphi(r) = 1 = x$. If x = -1, then fix r < 0 and $\varphi(r) = -1 = x$. From this it is not only clear that φ is epimorphic, but also that φ is NOT monomorphic, as r can be any positive real number and still map to 1; r can be any negative real number and still map to -1. Finally $\ker(\varphi) = \{x \in G \mid \varphi(x) = 1\} = \{x \in \mathbb{R} \mid x > 0\}$. (This solution is entirely based on the assumption that G' is taken under multiplication also.)

e) G an abelian group, n > 1 a fixed integer, and $\varphi : G \longmapsto G$ defined by $\varphi(a) = a^n$ for $a \in G$.

Note that for $a, b \in G$ we have that $\varphi(ab) = (ab)^n = a^n b^n = \varphi(a)\varphi(b)$ thanks to the abelian nature of G. Hence, φ is an endomorphism. Furthermore, $\ker(\varphi) = \{a \in G \mid a^n = e\} = \{a \in G \mid o(a) \mid n\}$. In general, nothing further can be said about φ . If for example, the order of every element in G is a divisor of n, then φ is trivial. If on the other hand (n, |G|) = 1 then $\varphi \in \operatorname{Aut}(G)$.

p. 74, #6 Prove that if $\varphi: G \longmapsto G'$ is a homomorphism, then $\varphi(G)$, the image of G, is a subgroup of G'.

Proof. First notice that $\varphi(G)$ is nonempty, as $\varphi(e) = e$. So let $a', b' \in \varphi(G)$. This implies that $\exists a, b \in G$ such that $\varphi(a) = a'$ and $\varphi(b) = b'$. Since $ab \in G$, we have $\varphi(ab) = \varphi(a)\varphi(b) = a'b' \in \varphi(G)$. Now, let $a' \in \varphi(G)$. Then $\exists a \in G$ such that $\varphi(a) = a'$. But $\varphi(a^{-1}) = (\varphi(a))^{-1} = (a')^{-1} \in \varphi(G)$. Therefore $\varphi(G)$ is a subgroup of G'.

p. 74, #12 Prove that if Z(G) is the center of G, then $Z(G) \triangleleft G$.

Proof. First we must show that $Z(G) \leq G$. This is not difficult, since we already have $e \in Z(G)$. Now let $z_1, z_2 \in Z(G)$. Then fix $x \in G$. Notice that $xz_1z_2 = z_1xz_2 = z_1z_2x$, so Z(G) has closure. Now let $z \in Z(G)$. Then $z^{-1} \in G$ clearly. Let $x \in G$, and notice that $xz^{-1} = (zx^{-1})^{-1} = (x^{-1}z)^{-1} = z^{-1}x$. Hence $z^{-1} \in Z(G)$. So, we have established that $Z(G) \leq G$. Now we fix $z \in Z(G)$, and let $x \in G$. Notice that $x^{-1}zx = x^{-1}xz = z \in Z(G)$. Hence $Z(G) \lhd G$.

p. 74, #14 If G is abelian and $\varphi: G \longmapsto G'$ is a homomorphism of G onto G', prove that G' is abelian.

Proof. Fix $a', b' \in G'$. Since φ is onto, $\exists a, b \in G$ such that $\varphi(a) = a'$ and $\varphi(b) = b'$. Now, $a'b' = \varphi(a)\varphi(b) = \varphi(ab) = \varphi(ba) = \varphi(b)\varphi(a) = b'a'$. Therefore G' is abelian.

p. 74, #15 If G is any group, $N \triangleleft G$, and $\varphi : G \longmapsto G'$ a homomorphism of G onto G', prove that the image, $\varphi(N)$, of N is a normal subgroup of G'.

Proof. The fact that $\varphi(N) \leq G'$, is established on problem (6) since $\varphi|_N : N \to G'$ is a group homomorphism. To see that $\varphi(N) \triangleleft G'$, fix $a' \in \varphi(N)$ and $x' \in G'$. Since φ is surjective, there are $x \in G$ and $a \in N$ such that $\varphi(x) = x'$ and $\varphi(a) = a'$. Since $N \triangleleft G$, we have $xax^{-1} \in N$ and so $x'a'(x')^{-1} = \varphi(x)\varphi(a)(\varphi(x))^{-1} = \varphi(x)\varphi(a)\varphi(x^{-1}) = \varphi(xax^{-1}) \in \varphi(N)$. Therefore $\varphi(N) \triangleleft G'$.

p. 74, #16 If $N \triangleleft G$ and $M \triangleleft G$ and $MN = \{mn \mid m \in M, n \in N\}$, prove that MN is a subgroup of G and that $MN \triangleleft G$.

Proof. Clearly $e \in MN$ as $e \in M$ and $e \in N$ and e = ee. Now let $m_1, m_2 \in M$ and $n_1, n_2 \in N$. N. Then $(m_1n_1)(m_2n_2)^{-1} = m_1n_1n_2^{-1}m_2^{-1} = (m_1m_2^{-1})(m_2n_1n_2^{-1}m_2^{-1}) \in MN$ since $m_1m_2^{-1} \in M$, $m_2(n_1n_2^{-1})m_2^{-1} \in N$, thanks to the normality of N in G. Hence, $MN \leq G$. Now for $m \in M, n \in N$, and $x \in G$ we have that $xmnx^{-1} = (xmx^{-1})(xnx^{-1}) \in MN$ since $N \triangleleft G$ and $M \triangleleft G$, ensures that $xmx^{-1} \in M$ and $xnx^{-1} \in N$.

p. 74, #17 If $M \triangleleft G$, $N \triangleleft G$, prove that $M \cap N \triangleleft G$.

Proof. First we must establish that $M \cap N \leq G$. Clearly $e \in M \cap N$ since $e \in M$ and $e \in N$. Next let $a, b \in M \cap N$. Therefore $ab \in M$, and $ab \in N$, which implies $ab \in M \cap N$. Finally, let $a \in M \cap N$. Then $a \in M$, $a \in N \Longrightarrow a^{-1} \in M$, $a^{-1} \in N \Longrightarrow a^{-1} \in M \cap N$. Therefore $M \cap N \leq G$. Now, fix $a \in M \cap N$ and let $x \in G$. Since $M \triangleleft G$, $N \triangleleft G$, $x^{-1}ax \in M$ and $x^{-1}ax \in N$. Therefore $x^{-1}ax \in M \cap N$, and we have that $M \cap N \triangleleft G$.

p. 75, #27 If θ is an automorphism of G and $N \triangleleft G$, prove that $\theta(N) \triangleleft G$.

Proof. This is a special case of problem (15).

- p. 76, #29 A subgroup T of a group W is called *characteristic* if $\varphi(T) \subset T$ for all automorphisms, φ , of W. Prove that:
 - a) M characteristic in G implies that $M \triangleleft G$.
 - **b)** M, N characteristic in G implies MN characteristic in G.
 - c) A normal subgroup of a group need not be characteristic. (This is quite hard; you must find an example of a group G and a noncharacteristic normal subgroup).

Solution. We establish the following small auxiliary result:

Lemma 1 Let G be a group and $g \in G$. Then the map $\alpha_g : G \to G$ defined by $\alpha_g(x) = gxg^{-1}$ is an automorphism of \dot{G} . In fact, α_g is called an inner automorphism of G. The set of all inner automorphisms of G is denoted by Inn (G) and it is a normal subgroup of Aut (G), the group of all automorphisms of G.

Proof of lemma. For $x, y \in G$ we have that $\alpha_g(xy) = gxyg^{-1} = (gxg^{-1})(gyg^{-1}) = \alpha_g(x)\alpha_g(y)$, fact that establishes the endomorphic nature of α_g . Furthermore, $\ker(\alpha_g) = \{x \in G \mid \alpha_g(x) = e\} = \{x \in G \mid gxg^{-1} = e\} = \{x \in G \mid gx = g\} = \{x \in G \mid x = e\} = \{e\}$ and so α_g is injective. Also for any $y \in G$ we have that $g^{-1}yg \in G$ and $\alpha_g(g^{-1}yg) = gg^{-1}ygg^{-1} = y$, fact that makes α_g surjective. Hence $\alpha_g \in \operatorname{Aut}(G)$. We now establish the rest of the lemma even though it is not necessary for this exercise:

Note that $i_G = \alpha_e \in \operatorname{Inn}(G)$. Furthermore for $g, h, x \in G$, we have that $(\alpha_g \circ \alpha_{g^{-1}})(x) = \alpha_g(\alpha_{g^{-1}}(x)) = \alpha_g(g^{-1}xg) = gg^{-1}xgg^{-1} = x$ and $(\alpha_{g^{-1}} \circ \alpha_g)(x) = \alpha_{g^{-1}}(\alpha_g(x)) = \alpha_{g^{-1}}(gxg^{-1}) = g^{-1}gxg^{-1}g = x$ and so $\alpha_g \circ \alpha_{g^{-1}} = \alpha_{g^{-1}} \circ \alpha_g = i_G$. Hence $\alpha_g^{-1} = \alpha_{g^{-1}} \in \operatorname{Inn}(G)$. Also $(\alpha_g \circ \alpha_h)(x) = \alpha_g(\alpha_h(x)) = \alpha_g(hxh^{-1}) = ghxh^{-1}g^{-1} = (gh)x(gh)^{-1} = \alpha_{gh}(x)$. It follows then that $\alpha_g \circ \alpha_h = \alpha_{gh} \in \operatorname{Inn}(G)$. Thus so far we have established that $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$. It remains to show that $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$. So fix $g, x \in G$ and $f \in \operatorname{Aut}(G)$. Then $(f \circ a_g \circ f^{-1})(x) = f(a_g(f^{-1}(x))) = f(gf^{-1}(x)g^{-1}) = f(g)f(f^{-1}(x))f(g^{-1}) = [f(g)]x[f(g)]^{-1} = \alpha_{f(g)}(x)$. Thus $f \circ a_g \circ f^{-1} = \alpha_{f(g)} \in \operatorname{Inn}(G)$ and the normality is established.

- a) Let $x \in G$. By the lemma $\alpha_x \in \text{Aut}(G)$ and since M is characteristic in G, we have that $xMx^{-1} = \alpha_x(M) \subset M$. Thus $M \lhd G$.
- b) From problem (16) and part (a) we know that $MN \triangleleft G$. In order to see that MN is characteristic in G, let $\varphi \in \text{Aut}(G)$, $m \in M$, and $n \in N$. As both M, N are characteristic in G, we conclude that $\varphi(m) \in M$ and $\varphi(n) \in N$ forcing $\varphi(mn) = \varphi(m) \varphi(n) \in MN$. Thus, $\varphi(MN) \subset MN$ and so MN is characteristic in G.

- c) Consider the group \mathbb{R} of real numbers under addition and its subgroup \mathbb{Z} of integers. Since \mathbb{R} is abelian then all its subgroups, and in particular \mathbb{Z} , are normal. Now it is easy to see that the map $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{2}$ is an automorphism of \mathbb{R} . On the other hand $f(\mathbb{Z}) \not\subset \mathbb{Z}$ since $f(1) = \frac{1}{2} \not\in \mathbb{Z}$.
- **p. 77**, #52 Let G be a finite group and φ an automorphism of G such that $\varphi(x) = x^{-1}$ for more than three-fourths of the elements of G. Prove that $\varphi(y) = y^{-1}$ for all $y \in G$, and so G is abelian.

Proof. Define $S = \{x \in G \mid \varphi(x) = x^{-1}\}$ and fix $g \in S$. Define $Sg^{-1} = \{xg^{-1} \in G \mid x \in S\}$. Observe that the map $\lambda : S \to Sg^{-1}$ defined by $\lambda(x) = xg^{-1}$ for all $x \in S$ is injective, for if $\lambda(x_1) = \lambda(x_2)$ for some $x_1, x_2 \in S$ then $x_1g^{-1} = x_2g^{-1}$ and so $x_1 = x_2$ by cancellation. Hence $|Sg^{-1}| \ge |S| > \frac{3}{4}|G|$. Therefore $|G| \ge |S \cup Sg^{-1}| = |S| + |Sg^{-1}| - |S \cap Sg^{-1}| > \frac{3}{4}|G| + \frac{3}{4}|G| - |S \cap Sg^{-1}| = \frac{3}{2}|G| - |S \cap Sg^{-1}|$ and so $|S \cap Sg^{-1}| > \frac{1}{2}|G|$. Note that if $y \in S \cap Sg^{-1}$ then there is an $x \in S$ such that $y = xg^{-1}$ and $\varphi(y) = y^{-1}$. It follows then that $gy = \varphi(g^{-1})\varphi(y^{-1}) = \varphi(g^{-1}y^{-1}) = \varphi((yg)^{-1}) = \varphi(x^{-1}) = x = yg$. Hence $S \cap Sg^{-1} \subset C(g)$, the centralizer of g in G. Thus $|C(g)| \ge |S \cap Sg^{-1}| > \frac{1}{2}|G|$ and by Lagrange's Theorem we conclude that C(g) = G which means that $g \in Z(G)$ the center of G. Hence $S \subset Z(G)$ and so $|Z(G)| \ge |S| > \frac{3}{4}|G|$. By Lagrange's Theorem once more, we are forced to conclude that Z(G) = G, fact that makes G abelian. To finish the problem we claim that $S \le G$: Clearly $e \in S$ and for $x, y \in S$ we have that $\varphi(xy^{-1}) = \varphi(x)\varphi(y^{-1}) = x^{-1}y = yx^{-1} = (xy^{-1})^{-1}$ establishing the fact that $xy^{-1} \in S$. By Lagrange's theorem one more time, we conclude that S = G.